Skip to main content
Log in

The effects of sintering temperature on structural, electrical, and magnetic properties of MgFe1.92Bi0.08O4

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this article, MgFe1.92Bi0.08O4 ceramics were prepared by the solid-state synthesis method followed by sintering at 1000, 1050, 1100, and 1150 °C. The effects of sintering temperature on structural, electrical, and magnetic properties were systematically investigated. The results showed that by increasing the sintering temperature, the lattice parameter was increased from 8.376 to 8.405 Å, the relative density was improved up to 97.1 %, the average grain size was increased from 1.92 to 4.12 μm, the d.c conductivity was increased from 38.4 to 5.8 MΩ.cm, the saturation magnetization was increased from 15.9 to 20.2 emu/g, and the coercive field was increased from 9.7 to 6.7 Oe. According to Maxwell and Wagner’s two-layer model, the dielectric behavior and AC conductivity of the samples were explained based on the space charge polarization. The sample sintered at 1050 °C revealed the optimum dielectric properties with a 0.016 dielectric loss and a 24.4 dielectric constant at 10 MHz. Further increasing the sintering temperature resulted in increasing the dielectric constant and dielectric loss up to 33.1, 0.156, respectively, due to the increased thermal activation of electron hopping between Fe2+ and Fe3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the [NAME] repository, [PERSISTENT WEB LINK TO DATASETS].

References

  1. S.Y. Mulushoa et al., Synthesis of spinel MgFe2O4 ferrite material and studying its structural and morphological properties using solid state method. Chem. Sci. 6(4), 653–661 (2017)

    CAS  Google Scholar 

  2. W.C. ALLEN, Temperature dependence of properties of magnesium ferrite. J. Am. Ceram. Soc. 49(5), 257–260 (1966)

    Article  CAS  Google Scholar 

  3. S.K. Gore et al., The structural and magnetic properties of dual phase cobalt ferrite. Sci. Rep. 7(1), 1–9 (2017)

    Article  CAS  Google Scholar 

  4. G. Gan et al., Influence of microstructure on magnetic and dielectric performance of Bi2O3-doped MgCd ferrites for high frequency antennas. Ceram. Int. 45(9), 12035–12040 (2019)

    Article  CAS  Google Scholar 

  5. S.M. Hoque et al., Study of the bulk magnetic and electrical properties of MgFe2O4 synthesized by chemical method. Mater. Sci. Appl. 2(11), 1564 (2011)

    CAS  Google Scholar 

  6. N. Varastegani et al., Varistor and electrical properties of MgO.(Fe2O3) 1 – x (Bi2O3) x ceramics. J. Eur. Ceram. Soc. 40(4), 1325–1329 (2020)

    Article  CAS  Google Scholar 

  7. D.L. Sekulić et al., Impedance spectroscopy of nanocrystalline MgFe2O4 and MnFe2O4 ferrite ceramics: Effect of grain boundaries on the electrical properties. Sci. Sintering. 48(1) (2016)

  8. A. Yaseen, T.H. Mubarak, S.M.A. Ridha, An effect of calcination temperatures on the characteristics of the MgFe2O4 nano ferrite prepared using auto combustion method. J. Biomol. Tech. 9(4), 9 (2018)

    CAS  Google Scholar 

  9. M. Gateshki et al., Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38(5), 772–779 (2005)

    Article  CAS  Google Scholar 

  10. J. Govha et al., Synthesis of Nano-magnesium ferrite spinel and its characterization. Int. J. Eng. Res. Technol. 3, 1420–1422 (2014)

    Google Scholar 

  11. K. Rane, V. Verenkar, P. Sawant, Dielectric behaviour of MgFe 2 O 4 prepared from chemically beneficiated iron ore rejects. Bull. Mater. Sci. 24(3), 323–330 (2001)

    Article  CAS  Google Scholar 

  12. A. Farea et al., Influence of frequency, temperature and composition on electrical properties of polycrystalline Co0. 5CdxFe2. 5 – xO4 ferrites. Physica B 403(4), 684–701 (2008)

    Article  CAS  Google Scholar 

  13. G. Gan et al., Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas. J. Alloy. Compd. 735, 2634–2639 (2018)

    Article  CAS  Google Scholar 

  14. A. Abdeen, Dielectric behaviour in Ni–Zn ferrites. J. Magn. Magn. Mater. 192(1), 121–129 (1999)

    Article  CAS  Google Scholar 

  15. V. Khot et al., Formation, microstructure and magnetic properties of nanocrystalline MgFe2O4. Mater. Chem. Phys. 132(2–3), 782–787 (2012)

    Article  CAS  Google Scholar 

  16. K. Maex et al., Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793–8841 (2003)

    Article  CAS  Google Scholar 

  17. J. Ekin, Experimental techniques for low-temperature measurements: Cryostat design, material properties and superconductor critical-current testing (Oxford University Press, Oxford, 2006)

  18. K.C. Chan et al., Ni1 – xCoxFe1. 98O4 ferrite ceramics with promising magneto-dielectric properties. J. Am. Ceram. Soc. 91(12), 3937–3942 (2008)

    Article  CAS  Google Scholar 

  19. F.L. Zabotto et al., Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites. Mater. Res. 15(3), 428–433 (2012)

    Article  CAS  Google Scholar 

  20. J. Kim, T. Kimura, T. Yamaguchi, Effect of bismuth of oxide content on the sintering of zinc oxide. J. Am. Ceram. Soc. 72(8), 1541–1544 (1989)

    Article  CAS  Google Scholar 

  21. M. Rozman, M. Drofenik, Sintering of nanosized MnZn ferrite powders. J. Am. Ceram. Soc. 81(7), 1757–1764 (1998)

    Article  CAS  Google Scholar 

  22. M. Drofenik, A. Znidarsic, D. Makovec, Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites. J. Am. Ceram. Soc. 81(11), 2841–2848 (1998)

    Article  CAS  Google Scholar 

  23. L. Kong et al., Electrical and magnetic properties of magnesium ferrite ceramics doped with Bi2O3. Acta Mater. 55(19), 6561–6572 (2007)

    Article  CAS  Google Scholar 

  24. C. Liu et al., Effects of sintering temperature and Bi2O3 content on microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater. 320(7), 1335–1339 (2008)

    Article  CAS  Google Scholar 

  25. H.I. Hsiang, J.F. Chueh, Bi2O3 addition effects on the sintering mechanism, magnetic properties, and DC superposition behavior of NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12(5), 1008–1015 (2015)

    Article  CAS  Google Scholar 

  26. M.T. Sebastian, Dielectric materials for wireless communication (Elsevier, Amsterdam, 2010)

  27. C. Venkataraju, G. Satishkumar, K. Sivakumar, Effect of bismuth on the properties of Mn ferrite nanoparticles prepared by co-precipitation method. J. Mater. Sci.: Mater. Electron. 23(6), 1163–1168 (2012)

    CAS  Google Scholar 

  28. K. Sun et al., Grain growth, densification and magnetic properties of NiZn ferrites with Bi2O3 additive. J. Phys. D: Appl. Phys. 41(23), 235002 (2008)

    Article  CAS  Google Scholar 

  29. R. Guo et al., Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloys Compd. 589, 1–4 (2014)

    Article  CAS  Google Scholar 

  30. L. Jia et al., Microstructures and magnetic properties of Bi-substituted NiCuZn ferrite. J. Appl. Phys. 111(7), 07A326 (2012)

    Article  CAS  Google Scholar 

  31. K.A. Nekouee et al., The effects of bismuth oxide on microstructures and magnetic properties of Mn-Mg-Al ferrites. J. Electron. Mater. 47(7), 4078–4084 (2018)

    Article  CAS  Google Scholar 

  32. K. Nalwa, A. Garg, A. Upadhyaya, Effect of samarium doping on the properties of solid-state synthesized multiferroic bismuth ferrite. Mater. Lett. 62(6–7), 878–881 (2008)

    Article  CAS  Google Scholar 

  33. JGd.M. Furtado et al., Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics. Mater. Res. 8(4), 425–429 (2005)

    Article  Google Scholar 

  34. P.A. Sossi, B. Fegley Jr., Thermodynamics of element volatility and its application to planetary processes. Rev. Mineral. Geochem. 84(1), 393–459 (2018)

    Article  CAS  Google Scholar 

  35. K.G. Brooks, Y. Berta, V.R. Amarakoon, Effect of Bi2O3 on impurity ion distribution and electrical resistivity of Li-Zn ferrites. J. Am. Ceram. Soc. 75(11), 3065–3069 (1992)

    Article  CAS  Google Scholar 

  36. Y. Ni, Magnetic sensors based on topological insulators (2016)

  37. F. Tyholdt et al., Synthesis of oriented BiFeO 3 thin films by chemical solution deposition: phase, texture, and microstructural development. J. Mater. Res. 20(8), 2127–2139 (2005)

  38. E.I. Speranskaya et al., The phase diagram of the system bismuth oxide-ferric oxide. Bull. Acad. Sci. USSR, Division of chemical science. 14(5), 873–874 (1965)

  39. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)

    Article  CAS  Google Scholar 

  40. R.M. Rosnan et al., The effect of sintering temperature on the structural and magnetic properties of Ni-Mg substituted CoFe2O4 nanoparticles. Mater. Sci. Forum. Trans Tech Publ (2016)

  41. N. Kouki et al., Microstructural analysis, magnetic properties, magnetocaloric effect, and critical behaviors of Ni 0.6 Cd 0.2 Cu 0.2 Fe 2 O 4 ferrites prepared using the sol–gel method under different sintering temperatures. RSC Adv. 9(4), 1990–2001 (2019)

    Article  CAS  Google Scholar 

  42. S. Nasrin et al., Synthesis and deciphering the effects of sintering temperature on structural, elastic, dielectric, electric and magnetic properties of magnetic Ni 0.25 Cu 0.13 Zn 0.62 Fe 2 O 4 ceramics. J. Mater. Sci.: Mater. Electron. 30(11), 10722–10741 (2019)

    CAS  Google Scholar 

  43. S.K. Gore et al., Influence of Bi 3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44(14), 6384–6390 (2015)

    Article  CAS  Google Scholar 

  44. S. Maitra, J. Roy, Effect of TiO2 and V2O5 additives on chemical mullite. Adv. Ceram. Sci. Eng. (ACSE). 2(3) (2013)

  45. D. Holz et al., Fundamentals of the densification mechanism of NiCuZn-ferrites. J. Jpn. Soc. Powder Powder Metall. 61(S1), S75–S77 (2014)

    Article  Google Scholar 

  46. J.E. ten Elshof, M. Lankhorst, H.J. Bouwmeester, Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation. J. Electrochem. Soc. 144(3), 1060 (1997)

    Article  CAS  Google Scholar 

  47. J. Mürbe, J. Töpfer, Ni-Cu-Zn Ferrites for low temperature firing: II. Effects of powder morphology and Bi 2 O 3 addition on microstructure and permeability. J. Electroceram. 16(3), 199–205 (2006)

    Article  CAS  Google Scholar 

  48. J. Jeong, Y.H. Han, B.C. Moon, Effects of Bi 2 O 3 addition on the microstructure and electromagnetic properties of NiCuZn ferrites. J. Mater. Sci.: Mater. Electron. 15(5), 303–306 (2004)

    CAS  Google Scholar 

  49. S.A. Lamonova, A.P. Surzhikov, E.N. Lysenko, Electrical properties of lithium ferrite with addition of ZrO2. in IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2016)

  50. S. Mazen, A. El, Taher, The conduction mechanism of Cu–Ge ferrite. Solid State Commun. 150(35–36), 1719–1724 (2010)

    Article  CAS  Google Scholar 

  51. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)

    Article  CAS  Google Scholar 

  52. C. Sujatha et al., Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39(3), 3077–3086 (2013)

    Article  CAS  Google Scholar 

  53. S. Mehmood, F. Zahra, M. Rehman. Effect of sintering on structural and electrical properties of co-precipitated Mn-Zn ferrites. in IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2016)

  54. J. Wong, Sintering and varistor characteristics of ZnO-Bi2O3 ceramics. J. Appl. Phys. 51(8), 4453–4459 (1980)

    Article  CAS  Google Scholar 

  55. D.L. Sekulic et al., Temperature-dependent complex impedance, electrical conductivity and dielectric studies of M Fe 2 O 4 (M = Mn, Ni, Zn) ferrites prepared by sintering of mechanochemical synthesized nanopowders. J. Mater. Sci.: Mater. Electron. 26(3), 1291–1303 (2015)

    CAS  Google Scholar 

  56. A. Beitollahi, M. Hoor, Effect of sintering temperature on the microstructure and high-frequency magnetic properties of Ni 0.467 Zn 0.07 Co 0.015 Fe 0.511 O 4 ferrite. J. Mater. Sci.: Mater. Electron. 14(8), 477–482 (2003)

    CAS  Google Scholar 

  57. D. Arcos et al., Grain boundary impedance of doped Mn–Zn ferrites. J. Mater. Res. 14(3), 861–865 (1999)

    Article  CAS  Google Scholar 

  58. J. Jose, M.A. Khadar, Role of grain boundaries on the electrical conductivity of nanophase zinc oxide. Mater. Sci. Eng. A 304, 810–813 (2001)

    Article  Google Scholar 

  59. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  60. S. Akhter et al., Structural, magnetic and electrical properties of Cu-Mg ferrites. J. Sci. Res. 6(2), 205–215 (2014)

    Article  CAS  Google Scholar 

  61. M. Gupta et al., Evidence of electron exchange between Fe2 + and Fe3 + ions on tetrahedral and octahedral sites in Fe2MoO4. J. Phys. C: Solid State Phys. 12(12), 2401 (1979)

    Article  CAS  Google Scholar 

  62. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 32(14), R57 (1999)

    Article  CAS  Google Scholar 

  63. J.C. Maxwell, Electricity and magnetism, vol. 2 (Dover New York, 1954)

  64. W.A. Yager, The distribution of relaxation times in typical dielectrics. Physics 7(12), 434–450 (1936)

    Article  Google Scholar 

  65. D. Ravinder, Electrical transport properties of cadmium substituted copper ferrites. Mater. Lett. 43(3), 129–138 (2000)

    Article  CAS  Google Scholar 

  66. N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites. Curr Appl. Phys. 11(3), 783–789 (2011)

    Article  Google Scholar 

  67. S. Fajardo et al., A critical review of the application of electrochemical techniques for studying corrosion of mg and mg alloys: Opportunities and challenges (Magnesium Alloys-Selected Issue, 2018)

  68. L. Kong et al., Magneto-dielectric properties of Mg–Cu–Co ferrite ceramics: II. Electrical, dielectric, and magnetic properties. J. Am. Ceram. Soc. 90(7), 2104–2112 (2007)

    Article  CAS  Google Scholar 

  69. F. Pizzitutti, F. Bruni, Electrode and interfacial polarization in broadband dielectric spectroscopy measurements. Rev. Sci. Instrum. 72(5), 2502–2504 (2001)

    Article  CAS  Google Scholar 

  70. L.T. Mei, H.I. Hsiang, W.H. Hsu, Varistor and magnetic properties of nickel copper zinc niobium ferrite doped with Bi 2 O 3. J. Am. Ceram. Soc. 97(12), 3918–3925 (2014)

    Article  CAS  Google Scholar 

  71. S. Misra, S. Ram, Magnetic, dielectric, and ferroelectric properties in Bi3+-substituted Li0. 35Zn0. 3Fe2. 35-xBixO4 (x = 0.1) nanocrystallites. Mater. Today Proc. 3(6), 2141–2145 (2016)

  72. S.I. Ahmad, S.A. Ansari, D.R. Kumar, Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 208, 248–257 (2018)

    Article  CAS  Google Scholar 

  73. I. Ahmad et al., Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 39(6), 6735–6741 (2013)

    Article  CAS  Google Scholar 

  74. N. Najmoddin et al., XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int. 40(2), 3619–3625 (2014)

    Article  CAS  Google Scholar 

  75. A. Goldman, Modern ferrite technology (Springer Science & Business Media, Berlin, 2006)

  76. S. Tafaroji et al., Effect of pre-sintering temperature and ball-milling on the conductivity of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3 – δ as a cathode for solid oxide fuel cells prepared by sol-gel thermolysis method. Materials Research Express 6(9), 095522 (2019)

    Article  CAS  Google Scholar 

  77. G. Singh, V. Tiwari, P. Gupta, Role of oxygen vacancies on relaxation and conduction behavior of KNbO 3 ceramic. J. Appl. Phys. 107(6), 064103 (2010)

    Article  CAS  Google Scholar 

  78. M.F. Al–Hilli, S. Li, K.S. Kassim, Gadolinium substitution and sintering temperature dependent electronic properties of Li–Ni ferrite. Mater. Chem. Phys. 128(1–2), 127–132 (2011)

    Article  CAS  Google Scholar 

  79. M. Wang et al., Extra up-spin magnetic moments and extraordinary high saturation magnetization of Ni2 + doped barium ferrite in 4f2 site. Mater. Res. Express 6(8), 086104 (2019)

    Article  CAS  Google Scholar 

  80. A. Franco Jr., M. Silva, High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 109(7), 07B505 (2011)

    Article  CAS  Google Scholar 

  81. I. Szafraniak-Wiza, B. Andrzejewski, B. Hilczer, Magnetic properties of bismuth ferrite nanopowder obtained by mechanochemical synthesis. arXiv preprint arXiv:1407.4657 (2014)

  82. D. Xue, W. Ma, Magnetic switching of a Stoner-Wohlfarth particle subjected to a perpendicular bias field. Electronics 8(3), 366 (2019)

    Article  Google Scholar 

  83. E.C. Stoner, E. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 240(826), 599–642 (1948)

    Google Scholar 

  84. A. Anwar et al., Impact of rare earth Dy + 3 cations on the various parameters of nanocrystalline nickel spinel ferrite. J. Mater. Res. Technol. 9(3), 5313–5325 (2020)

    Article  CAS  Google Scholar 

  85. M.P. Reddy et al., Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J. Magn. Magn. Mater. 322(19), 2819–2823 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from Tarbiat Modares University is also gratefully acknowledged. This work was partially supported by a grant from the Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0175, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Yourdkhani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varastegani, N., Yourdkhani, A., Seyed Ebrahimi, S.A. et al. The effects of sintering temperature on structural, electrical, and magnetic properties of MgFe1.92Bi0.08O4. J Electroceram 46, 151–161 (2021). https://doi.org/10.1007/s10832-021-00252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00252-9

Keywords

Navigation