Skip to main content
Log in

Insights on the phase transitions, stability and conductivity in the Bi2O3-WO3 system

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Equilibrium phases of the Bi2O3-WO3 system, synthesized using the citrate-gel method with slow cooling, have been systematically investigated for samples with 22–27 mol% WO3. Annealing temperature and content of WO3 were shown to play a significant role in the phases present. Both powder X-ray diffraction and Raman spectroscopy revealed that the room temperature equilibrium phases were 7Bi2O3-WO3 and 7Bi2O3-2WO3, with the latter being dominant. Variable temperature Raman spectroscopy showed that both these phases were present up to 850 °C, with the possible formation of a third unidentified phase at higher temperatures. The ionic conductivities of the mixed-phase materials were between that for the pure 7Bi2O3-WO3 and 7Bi2O3-2WO3 phases and at 700 °C was only about three times lower than that of the pure defect fluorite phase of the 22 mol% WO3 samples. The Arrhenius plots showed no sudden increase in conductivity between 300 and 750 °C providing evidence that no major phase change occurred in this temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. S.P. Adhikari, H. Dean, Z.D. Hood, R. Peng, K.L. More, I. Ivanov, Z. Wu, A. Lachgar, Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. RSC Adv. 5(111), 91094–91102 (2015)

    Article  CAS  Google Scholar 

  2. X.F. Cao, L. Zhang, X.T. Chen, Z.L. Xue, Microwave-assisted solution-phase preparation of flower-like Bi2WO6 and its visible-light-driven photocatalytic properties. CrystEngComm 13(1), 306–311 (2011)

    Article  CAS  Google Scholar 

  3. A.M. Azad, S. Larose, S.A. Akbar, Bismuth oxide-based solid electrolytes for fuel cells. J. Mater. Sci. 29(16), 4135–4151 (1994)

    Article  CAS  Google Scholar 

  4. T. Takahashi, H. Iwahara, High oxide ion conduction in sintered oxides of the system Bi2O3 -WO3. J. Appl. Electrochem. 3(1), 65–72 (1973)

    Article  Google Scholar 

  5. T. Takahashi, H. Iwahara, Oxide ion conductors based on bismuth sesquioxide. Mater. Res. Bull 13(12), 1447–1453 (1978)

    Article  CAS  Google Scholar 

  6. P. Shuk, H.D. Wiemhöfer, U. Guth, W. Göpel, M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ion. 89(3–4), 179–196 (1996)

    Article  CAS  Google Scholar 

  7. A. Laarif, F. Theobald, The lone pair concept and the conductivity of bismuth oxides Bi2O3. Solid State Ion. 21(3), 183–193 (1986)

    Article  CAS  Google Scholar 

  8. J.C. Boivin, Structural and electrochemical features of fast oxide ion conductors. Int. J. Inorg. Mater. 3(8), 1261–1266 (2001)

    Article  CAS  Google Scholar 

  9. C.R. Rao, G.S. Rao, S. Ramdas, Phase transformations and electrical properties of bismuth sesquioxide. J. Phys. Chem. 73(3), 672–675 (1969)

    Article  CAS  Google Scholar 

  10. M. Drache, P. Roussel, J.P. Wignacourt, Structures and oxide mobility in Bi – Ln – O materials: heritage of Bi2O3. Chem. Rev. 107(1), 80–96 (2007)

    Article  CAS  Google Scholar 

  11. E.M. Levin, R.S. Roth, Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on the polymorphism of Bi2O3. J. Res. Natl Inst. Stand. Technol. 68(2), 197–206 (1964)

    Article  Google Scholar 

  12. N. Jiang, E.D. Wachsman, S.H. Jung, A higher conductivity Bi2O3-based electrolyte. Solid State Ion. 150(3–4), 347–353 (2002)

    Article  CAS  Google Scholar 

  13. A. Watanabe, M. Sekita, Stabilized δ-Bi2O3 phase in the system Bi2O3–Er2O3–WO3 and its oxide-ion conduction. Solid State Ion. 176(31–34), 2429–2433 (2005)

    Article  CAS  Google Scholar 

  14. D. Mercurio, M.El Farissi, B. Frit, J.M. Reau, J. Senegas, Fast ionic conduction in new oxide materials of the Bi2O3–Ln2O3–TeO2 systems (Ln = La, Sm, Gd, Er). Solid State Ion. 39(3–4), 297–304 (1990)

    Article  CAS  Google Scholar 

  15. N. Portefaix, P. Conflant, J.C. Boivin, J.P. Wignacourt, M. Drache, New Bi–Ln–V–O anionic conductors with δ-Bi2O3 fluorite-type structure (Ln = Y, Sm, Eu, Gd, Tb, Dy, Er, Yb). J. Solid State Chem. 134(2), 219–226 (1997)

    Article  CAS  Google Scholar 

  16. K. Shitara, T. Moriasa, A. Sumitani, A. Seko, H. Hayashi, Y. Koyama, R. Huang, D. Han, H. Moriwake, I. Tanaka, First-principles selection of solute elements for Er-stabilized Bi2O3 oxide-ion conductor with improved long-term stability at moderate temperatures. Chem. Mater. 29(8), 3763–3768 (2017)

    Article  CAS  Google Scholar 

  17. S. Bandyopadhyay, A. Dutta, A structural insight into the electrical properties of Dy-Ho co-doped phase stabilized Bismuth Oxide based electrolytes. J. Electroanal. Chem. 817, 55–64 (2018)

    Article  CAS  Google Scholar 

  18. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011)

    Article  CAS  Google Scholar 

  19. A. Watanabe, Polymorphic transformation of δ-Bi2O3 stabilized with Ln2O3 (Ln = Sm, Eu, Gd, Tb and Dy) into a new phase with a C-type rare-earth oxide-related structure. Solid State Ion. 79, 84–88 (1995)

    Article  CAS  Google Scholar 

  20. A. Watanabe, A. Ono, Thermostable region of an oxide ion conductor, Bi7WO13.5 (= 7Bi2O3·2WO3), and the solid solubility extension. Solid State Ion. 174(1–4), 15–18 (2004)

    Article  CAS  Google Scholar 

  21. A. Borowska-Centkowska, M. Leszczynska, F. Krok, M. Malys, W. Wrobel, S. Hull, I. Abrahams, Local structure and conductivity behavior in Bi7WO13.5. J. Mater. Chem. A 6(13), 5407–5418 (2018)

    Article  CAS  Google Scholar 

  22. A. Borowska-Centkowska, F. Krok, I. Abrahams, W. Wrobel, J.R. Dygas, S. Hull, Thermal variation of structure and electrical conductivity in Bi14WO24. Solid State Ion. 202(1), 14–21 (2011)

    Article  CAS  Google Scholar 

  23. S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography Open Database–an open-access collection of crystal structures. J. Appl. Crystallogr. 42(4), 726–729 (2009)

    Article  Google Scholar 

  24. T.O.P.A.S. Bruker, version 5. Bruker AXS Inc., Madison, Wisconsin, 2014

  25. G. Bergerhoff, I.D. Brown, in Crystallographic databases, ed. by F. By, G. Allen, R. Bergerhoff, Sievers (International Union of Crystallography, Chester, 1987), pp. 77–95

    Google Scholar 

  26. D.W. Jung, J.C. Nino, K.L. Duncan, S.R. Bishop, E.D. Wachsman, Enhanced long-term stability of bismuth oxide-based electrolytes for operation at 500°C. Ionics 16(2), 97–103 (2010)

    Article  CAS  Google Scholar 

  27. H. Jung, S.Y. Chung, Absence of distinctively high grain-boundary impedance in polycrystalline cubic bismuth oxide. J. Korean Ceram. Soc. 54(5), 413–421 (2017)

    Article  CAS  Google Scholar 

  28. S.N. Hoda, L.L. Chang, Phase relations in the system Bi2O3-WO3. J. Am. Ceram. Soc. 57(7), 323–326 (1974)

    Article  CAS  Google Scholar 

  29. A.E. Danks, S.R. Hall, Z.J.M.H. Schnepp, The evolution of ‘sol–gel’chemistry as a technique for materials synthesis. Mater. Horiz. 3(2), 91–112 (2016)

    Article  CAS  Google Scholar 

  30. A.R. West, Solid State Chemistry and its Applications (Wiley, Hoboken, 2014)

  31. F.D. Hardcastle, I.E. Wachs, Raman spectroscopy of bismuth tungstates. J. Raman Spectrosc. 26(6), 407–412 (1995)

    Article  CAS  Google Scholar 

  32. V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ion. 174(1–4), 135–149 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the following for financial support for this work: National Research Foundation (Grant Numbers 78555; 99003; 105852), the DST/NRF Centre of Excellence in Strong Materials and the University of the Witwatersrand.

Funding

National Research Foundation (Grant Numbers 78555; 99003; 105852), the DST/NRF Centre of Excellence in Strong Materials and the University of the Witwatersrand.

Author information

Authors and Affiliations

Authors

Contributions

(optional: please review the submission guidelines from the journal whether statements are mandatory)

Corresponding author

Correspondence to Caren Billing.

Ethics declarations

Conflicts of interest/Competing interests

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masina, S.M., Billing, C., Erasmus, R.M. et al. Insights on the phase transitions, stability and conductivity in the Bi2O3-WO3 system. J Electroceram 46, 47–56 (2021). https://doi.org/10.1007/s10832-021-00243-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00243-w

Keywords

Navigation