Skip to main content
Log in

Novel spinel magnetic-dielectric ceramics designed for high frequency applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Novel magnetic-dielectric ceramics based on Li0.43Zn0.27Ti0.13Fe2.17O4 (LZTF) ferrites and Li2ZnTi3O8 (LZT) dielectrics were fabricated via a traditional solid-state reaction method. Pure spinel structure and dense morphology were obtained within a wide sintering temperature range of 1050–1150 °C. The introduction of the LZT dielectrics into the LZTF magnetic phase reduced the saturation magnetization (Ms), the saturation induction (Bs), and the coercive field (Hc). The introduction of the dielectric phase remarkably declined the FMR line width (ΔH) values from 200 Oe to 45 Oe at 9.55 GHz. Acceptable microwave dielectric properties were also obtained. The experimental results indicated that this xLZTF-(1-x)LZT (x = 10 wt.%, 35 wt.%, 60 wt.%, 90 wt.%) magnetic-dielectric ceramic system is a potential candidate for high frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. B. Yang, H. Wang, F. Xiang, and X. Yao, Microstructure and electromagnetic properties of SrTiO3/Ni0.8Zn0.2Fe2O4 composites by hybrid process. J. Am. Ceram. Soc., 92[9] (2009) 2005–10

  2. S. David, J.L. Mattei, A. Chevalier, P. Queffelec, Influential parameters on electromagnetic properties of Nickel-Zinc ferrites for antenna miniaturization. J. Appl. Phys. 107(9), 09A518 (2010)

    Article  Google Scholar 

  3. A.D.P. Rao, P.R.M. Rao, S.B. Raju, Dielectric unusual behaviour of Sn/Nb substituted Mn–Zn ferrites. Mater. Chem. Phys. 65(1), 90–96 (2000)

    Article  CAS  Google Scholar 

  4. K. Mohit, S.K. Rout, S. Parida, G.P. Singh, S.K. Sharma, S.K. Pradhan, I.W. Kim, Structural, optical and dielectric studies of NixZn1-xFe2O4 prepared by auto combustion route. Physica B 407(6), 935–942 (2012)

    Article  CAS  Google Scholar 

  5. S. Li-na, P. Liu, Y. He, J.-p. Zhou, L. Cao, C. Liu, H.-W. Zhang, Electrical and magnetic properties of low-temperature sintered xBa0.6Sr0.4TiO3+(1-x)Ni0.2Cu0.2Zn0.62O(Fe2O3)0.98 composite ceramics. J. Alloys Compd. 494, 330–335 (2010)

    Article  Google Scholar 

  6. J. Smit, H.P.J. Wijn, Ferrites (Wiley Publisher, New York, 1979)

  7. V.G. Harris, Modern microwave ferrites. IEEE Trans. Magn. 48(3), 1075–1104 (2012)

    Article  CAS  Google Scholar 

  8. P.D. Baba, G.M. Argentina, W.E. Courtney, G.F. Dionne, D.H. Temme, Fabrication and properties of microwave lithium ferrites. IEEE Trans. Magn. 8(1), 83–94 (1972)

    Article  CAS  Google Scholar 

  9. G.F. Dionne, Molecular-field coefficients of Ti4+- and Zn2+-substituted lithium ferrites. J. Appl. Phys. 45(8), 3621–3626 (1974)

    Article  CAS  Google Scholar 

  10. T. Zhou, H. Zhang, L. Jia, Y. Liao, Z. Zhong, F. Bai, H. Su, J. Li, L. Jin, C. Liu, Enhanced ferromagnetic properties of low temperature sintering LiZnTi ferrites with Li2O-B2O3-SiO2-CaO-Al2O3 glass addition. J. Alloys Compd. 620, 421–426 (2015)

    Article  CAS  Google Scholar 

  11. G.M. Argentina, P.D. Baba, Microwave lithium ferrites: An overview. IEEE Trans. Microwave Theory Tech. 22(6), 652–658 (1974)

    Article  CAS  Google Scholar 

  12. R. Guo, Z. Yu, Y. Yang, X. Jiang, K. Sun, C. Wu, Z. Xu, Z. Lan, Effects of Bi2O3 on FMR linewidth and microwave dielectric properties of LiZnMn ferrite. J. Alloys Compd. 589, 1–4 (2014)

    Article  CAS  Google Scholar 

  13. G. Blasse, Crystal chemistry and some magnetic properties of mixed metal oxides with spinel structure (Chapter 8, Philips Research Laboratories, Eindhoven, 1964)

  14. T. Zhou, D. Zhang, L. Jia, F. Bai, L. Jin, Y. Liao, T. Wen, C. Liu, H. Su, N. Jia, Z. Zheng, V.G. Harris, H. Zhang, Z. Zhong, Effect of NiZn ferrite nanoparticles upon the structure and magnetic and gyromagnetic properties of low-temperature processed LiZnTi ferrites. J. Phys. Chem. C 119(23), 13207–13214 (2015)

    Article  CAS  Google Scholar 

  15. M. Makimoto, S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application (Springer Publishers, Berlin, 2001)

  16. W. Wersing, Microwave ceramics for resonators and filters. Curr. Opin. Solid State Mater. Sci. 1(5), 715–731 (1996)

    Article  CAS  Google Scholar 

  17. M.T. Sebastian, Dielectric Materials for Wireless Communications (Elsevier Publishers, Oxford, 2008)

  18. K. Wakino, Miniaturization technologies of dielectric resonator filters for mobile communications. IEEE Trans. Microwave Theory Tech. 42(7), 1295–1300 (1994)

    Article  Google Scholar 

  19. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, K. Wakino, Dielectric materials, devices, and circuits. IEEE Trans. Microwave Theory Tech. 50(3), 706–720 (2002)

    Article  CAS  Google Scholar 

  20. H.M.J. O’Bryan, J.J. Thomson, J.K. Plourde, A new BaO-TiO2 compound with temperature-stable high permittivity and low microwave loss. J. Am. Ceram. Soc. 57(10), 450–453 (1974)

    Article  Google Scholar 

  21. J.K. Plourde, D.F. Linn, H.M.J. O’Bryan, J.J. Thompson, Ba2Ti9O20 as a microwave dielectric resonator. J. Am. Ceram. Soc. 58(9-10), 418–420 (1975)

    Article  CAS  Google Scholar 

  22. H. Tamura, Microwave loss quality of (Zr0.8Sn0.2)TiO4. J. Am. Ceram. Soc. Bull. 73, 92–95 (1994)

    CAS  Google Scholar 

  23. S. George, M.T. Sebastian, Microwave dielectric properties of novel temperature stable high Q Li2Mg1-xZnxTi3O8 and Li2A1-xCaxTi3O8 (a=mg, Zn) ceramics. J. Euro. Ceram. Soc. 30(12), 2585–2592 (2010)

    Article  CAS  Google Scholar 

  24. V.S. Hernandez, L.M.T. Martinez, G.C. Mather, A.R. West, Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2-2xTi1+0.67xO4. J. Mater. Chem. 6, 1533–1536 (1996)

    Article  CAS  Google Scholar 

  25. H. Kawai, M. Tabuchi, M. Nagata, H. Tukamoto, A.R. West, Crystal chemistry and physical properties of complex lithium spinels Li2MM′3O8 (M=mg, co, Ni, Zn; M′=Ti, Ge). J. Mater. Chem. 8(5), 1273–1280 (1998)

    Article  CAS  Google Scholar 

  26. C. Liu, H. Zhang, H. Su, T. Zhou, J. Li, X. Chen, W. Miao, L. Xie, L. Jia, Low temperature sintering BBSZ glass modified Li2MgTi3O8 microwave dielectric ceramics. J. Alloys Compd. 646, 1139–1142 (2015)

    Article  CAS  Google Scholar 

  27. L. He, D. Zhou, H. Yang, J. Guo, H. Wang, A Novel Magneto-Dielectric Solid Solution Ceramic 0.25LiFe5O8–0.75Li2ZnTi3O8 with Relatively High Permeability and Ultra-Low Dielectric Loss. J. Am. Ceram. Soc. 95(12), 3732–3734 (2012)

    Article  CAS  Google Scholar 

  28. J. Guo, D. Zhou, S. Zou, H. Wang, L. Pang, X. Yao, Microwave Dielectric Ceramics Li2MO4-TiO2 (M=Mo, W) with Low Sintering Temperatures. J. Am. Ceram. Soc. 97(6), 1819–1822 (2014)

    Article  CAS  Google Scholar 

  29. G. Wang, H.W. Zhang, X. Huang, F. Xu, G.W. Gan, Y. Yang, D.D. Wen, J. Li, C. Liu, L.C. Jin, Correlations between the structural characteristics and enhanced microwave dielectric properties of V-modified Li3Mg2NbO6 ceramics. Ceram. Int. 44(16), 19295–19300 (2018)

    Article  CAS  Google Scholar 

  30. H.R. Zheng, S.H. Yu, L.X. Li, X.S. Lyu, Z. Sun, S.L. Chen, Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1-x)MgMoO4-xTiO2 composite ceramics. J. Euro. Ceram. Soc. 37(15), 4661–4665 (2017)

    Article  CAS  Google Scholar 

  31. J.F. Sierra, F.G. Aliev, R. Heindl, S.E. Russek, W.H. Rippard, Broadband ferromagnetic resonance linewidth measurement of magnetic tunnel junction multilayers. Appl. Phys. Lett. 94(1), 012506 (2009)

    Article  Google Scholar 

  32. N.G. Chechenin, C.B. Craus, A.R. Chezan, T. Vystavel, D.O. Boerma, J.T.M. De Hosson, L. Niesen, Relation between observed micromagnetic ripple and FMR width in ultrasoft magnetic films. IEEE Trans. Magn. 38(5), 3027–3029 (2002)

    Article  CAS  Google Scholar 

  33. Z. Zhang, L. Bai, X. Chen, H. Guo, X.L. Fan, D.S. Xue, D. Houssameddine, C.M. Hu, Observation of thermal spin-transfer torque via ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. B 94(6), 064414 (2016)

    Article  Google Scholar 

  34. E. Schlomann, Spin-wave analysis of ferromagnetic resonance in polycrystalline ferrites. J. Phys. Chem. Solids 6(2-3), 242–256 (1958)

    Article  CAS  Google Scholar 

  35. E.G. Spencer, D.A. Lepore, J.W. Nielson, Measurements on Lithium ferrite crystals having near-zero defect concentrations. J. Appl. Phys. 39(2), 732–733 (1968)

    Article  CAS  Google Scholar 

  36. C.J. Brower, C.E. Patton, Determination of anisotropy field in polycrystalline lithium ferrites from FMR linewidths. J. Appl. Phys. 53(3), 2104–2106 (1982)

    Article  CAS  Google Scholar 

  37. A.K. Srivastava, M.J. Patni, Ferromagnetic resonance of gadolinium doped calcium vanadium garnets. J. Appl. Phys. 81(4), 1863–1867 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51672036), the National Key Scientific Instrument and Equipment Development Project (No.51827802), the Major Science and Technology Specific Projects of Sichuan Province (No. 2019ZDZX0026), the Sichuan Science and Technology Program (No. 2020YFG0108), and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2019J021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xu, W., Zhang, H. et al. Novel spinel magnetic-dielectric ceramics designed for high frequency applications. J Electroceram 46, 26–32 (2021). https://doi.org/10.1007/s10832-021-00241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00241-y

Keywords

Navigation