The performance of intermediate temperature solid oxide fuel cells with sputter deposited La1-xSrxCoO3 interlayer

Abstract

The paper studies the performance of the intermediate temperature solid oxide fuel cells with the sputter deposited La1-xSrxCoO3 (LSC) interlayer between the cathode and electrolyte. The sputter deposition of the LSC thin films is carried out in argon gas and in a mixture of argon and oxygen gases and then are annealed at 600, 800 and 1000 °C in air for 2 h. The structure and composition of the sputter deposited LSC films are investigated by the X-ray diffraction analysis, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. The polarization resistance of the sputter deposited LSC films (600 nm thick) on the symmetric cells is 0.13, 0.45 and 2.48 Ohm·cm2 measured at 800, 700 and 600 °C, respectively. Measurements are performed by electrochemical impedance spectroscopy. The maximum power density of the anode-supported solid oxide fuel cells with the yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte, LSC interlayer, and LSC cathode is 2.27, 1.58 and 0.68 W/cm2 measured at 800, 700 and 600 °C, respectively. These values of the power density are respectively 1.4, 1.6 and 2.3 times higher than that of the reference cell without the LSC interlayer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J. Jiang, J.L. Hertz, J. Electroceram. 32(1), 37–46 (2014). https://doi.org/10.1007/s10832-013-9857-1

    CAS  Article  Google Scholar 

  2. 2.

    J.H. Park, W. Hong, J. Lee, K.J. Yoon, H. Kim, J. Hong, H.-S. Song, J.-W. Son, J. Electroceram. 33(1-2), 25–30 (2014). https://doi.org/10.1007/s10832-014-9903-7

    CAS  Article  Google Scholar 

  3. 3.

    R. Barfod, A. Hagen, S. Ramousse, P.V. Hendriksen, M. Mogensen, Fuel Cells 6(2), 141–145 (2006). https://doi.org/10.1002/fuce.200500113

    CAS  Article  Google Scholar 

  4. 4.

    J.H. Park, S.M. Han, B.K. Kim, J.H. Lee, K.J. Yoon, H. Kim, H.I. Ji, J.W. Son, Electrochim. Acta 296, 1055–1063 (2019). https://doi.org/10.1016/j.electacta.2018.11.018

    CAS  Article  Google Scholar 

  5. 5.

    A.A. Samat, M.R. Somalu, A. Muchtar, O.H. Hassan, N. Osman, J. Sol-Gel Sci. Technol. 78(2), 382–393 (2016). https://doi.org/10.1007/s10971-015-3945-4

    CAS  Article  Google Scholar 

  6. 6.

    D. Chen, S.R. Bishop, H.L. Tuller, J. Electroceram. 28(1), 62–69 (2012). https://doi.org/10.1007/s10832-011-9678-z

    CAS  Article  Google Scholar 

  7. 7.

    S. Okada, S. Miyoshi, S. Yamaguchi, ECS Trans. 68(1), 987–994 (2015). https://doi.org/10.1149/06801.0987ecst

    CAS  Article  Google Scholar 

  8. 8.

    A.V. Nikonov, N.B. Pavzderin, S.N. Shkerin, O.I. Gyrdasova, A.S. Lipilin, Russ. J. Appl. Chem. 90(3), 369–373 (2017). https://doi.org/10.1134/S1070427217030077

    CAS  Article  Google Scholar 

  9. 9.

    J. Yoon, S. Cho, J.H. Kim, J.H. Lee, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, H. Wang, Adv. Funct. Mater. 19(24), 3868–3873 (2009). https://doi.org/10.1002/adfm.200901338

    CAS  Article  Google Scholar 

  10. 10.

    B.A. Boukamp, N. Hildebrand, P. Nammensma, D.H.A. Blank, Solid State Ionics 192(1), 404–408 (2011). https://doi.org/10.1016/j.ssi.2010.05.037

    CAS  Article  Google Scholar 

  11. 11.

    N. Hildenbrand, B.A. Boukamp, P. Nammensma, D.H.A. Blank, Solid State Ionics 192(1), 12–15 (2011). https://doi.org/10.1016/j.ssi.2010.01.028

    CAS  Article  Google Scholar 

  12. 12.

    S. Molin, P.Z. Jasinski, Mater. Lett. 189, 252–255 (2017). https://doi.org/10.1016/j.matlet.2016.11.101

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Choi, K. Bae, S. Grieshammer, G.D. Han, S.W. Park, J.W. Kim, D.Y. Jang, J. Koo, J.W. Son, M. Martin, J.H. Shim, Adv. Energy Mater. 8(33), 1802506 (2018). https://doi.org/10.1002/aenm.201802506

    CAS  Article  Google Scholar 

  14. 14.

    L. Dieterle, P. Bockstaller, D. Gerthsen, J. Hayd, E. Ivers-Tiffée, U. Guntow, Adv. Energy Mater. 1(2), 249–258 (2011). https://doi.org/10.1002/aenm.201000036

    CAS  Article  Google Scholar 

  15. 15.

    S.S. Shin, J.H. Kim, G. Li, S.Y. Lee, J.W. Son, H. Kim, M. Choi, Int. J. Hydrogen Energ. 44(9), 4476–4483 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.143

    CAS  Article  Google Scholar 

  16. 16.

    F.J. Garcia-Garcia, F. Yubero, A.R. González-Elipe, S.P. Balomenou, D. Tsiplakides, I. Petrakopoulou, R.M. Lambert, Int. J. Hydrogen Energ. 40(23), 7382–7387 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.001

    CAS  Article  Google Scholar 

  17. 17.

    F.J. Garcia-Garcia, F. Yubero, J.P. Espinós, A.R. González-Elipe, R.M. Lambert, J. Power Sources 324, 679–686 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.124

    CAS  Article  Google Scholar 

  18. 18.

    H.S. Noh, J. Hong, H. Kim, K.J. Yoon, B.K. Kim, H.W. Lee, J.H. Lee, J.W. Son, J. Electrochem. Soc. 163(7), F613–F617 (2016). https://doi.org/10.1149/2.0331607jes

    CAS  Article  Google Scholar 

  19. 19.

    M.R. Weimar, L.A. Chick, D.W. Gotthold, G.A. Whyatt, DOE Report, Cost study for manufacturing of solid oxide fuel cell power systems. (United States, 2013). DOI: https://doi.org/10.2172/1126362

  20. 20.

    J.M. Ralph, A.C. Schoeler, M. Kumpelt, J. Mater. Sci. 36(9), 1161–3143 (2001). https://doi.org/10.1007/s10853-008-2502-8

    CAS  Article  Google Scholar 

  21. 21.

    A. Ringuedé, J. Fouletier, Solid State Ionics 139(3-4), 167–177 (2001). https://doi.org/10.1016/S0167-2738(01)00692-0

    Article  Google Scholar 

  22. 22.

    A. Bieberle-Hütter, H.L. Tuller, J. Electroceram. 16(2), 151–157 (2006). https://doi.org/10.1007/s10832-006-5945-9

    CAS  Article  Google Scholar 

  23. 23.

    E.A. Smolyanskiy, S.A. Linnik, I.V. Ionov, A.V. Shipilova, V.A. Semenov, A.L. Lauk, A.A. Solovyev, J. Phys. Conf. Ser. 1115, 032080 (2018). https://doi.org/10.1088/1742-6596/1115/3/032080

    CAS  Article  Google Scholar 

  24. 24.

    P. Lippens, U. Muehlfeld Indium Tin Oxide (ITO): Sputter Deposition Processes. In: Handbook of Visual Display Technology. Chen J., Cranton W., Fihn M. (eds). Springer, Berlin, Heidelberg (2012). DOI: https://doi.org/10.1007/978-3-540-79567-4_54

  25. 25.

    A.A. Solovyev, A.V. Shipilova, I.V. Ionov, A.N. Kovalchuk, S.V. Rabotkin, V.O. Oskirko, J. Electron. Mater. 45(8), 3921–3928 (2016). https://doi.org/10.1007/s11664-016-4462-0

    CAS  Article  Google Scholar 

  26. 26.

    N.M.L.N.P. Closset, R.H.E. van Doorn, H. Kruidhof, Powder Diffraction 11(1), 31 (1996). https://doi.org/10.1017/S0885715600008873

    CAS  Article  Google Scholar 

  27. 27.

    C.R. Gobbiner, M.A.A. Veedu, D. Kekuda, Appl. Phys. A Mater. Sci. Process. 122(4), 272 (2016). https://doi.org/10.1007/s00339-016-9806-3

    CAS  Article  Google Scholar 

  28. 28.

    K. Tominaga, S. Iwamura, Y. Shintani, O. Tada, Jpn. J. Appl. Phys. 21, 688 (1982). https://doi.org/10.1143/JJAP.21.688

    CAS  Article  Google Scholar 

  29. 29.

    H.C. Nguyen, T.T. Trinh, T. Le, C.V. Tran, T. Tran, H. Park, V.A. Dao, J. Yi, Semicond. Sci. Technol. 26(10), 105022 (2011). https://doi.org/10.1088/0268-1242/26/10/105022

    CAS  Article  Google Scholar 

  30. 30.

    S.A.M. Ali, M. Anwar, N.A. Baharuddin, M.R. Somalu, A. Muchtar, J. Solid State Electrochem. 22(1), 263–273 (2018). https://doi.org/10.1007/s10008-017-3754-5

    CAS  Article  Google Scholar 

  31. 31.

    Y. Tao, J. Shao, W.G. Wang, J. Wang, Fuel Cells 9(5), 679–683 (2009). https://doi.org/10.1002/fuce.200900058

    CAS  Article  Google Scholar 

  32. 32.

    Q. Su, D. Yoon, Y.N. Kim, W. Gong, A. Chen, S. Cho, A. Manthiram, A.J. Jacobson, H. Wang, J. Power Sources 218, 261–267 (2012). https://doi.org/10.1016/j.jpowsour.2012.06.094

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. 17-79-30071 from the Russian Science Foundation. The authors are grateful to the administration of the Institute of Electrophysics of the Ural Division RAS for providing EIS measurements under the government contract No. 0389-2019-0004.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Solovyev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solovyev, A.A., Shipilova, A.V., Ionov, I.V. et al. The performance of intermediate temperature solid oxide fuel cells with sputter deposited La1-xSrxCoO3 interlayer. J Electroceram (2021). https://doi.org/10.1007/s10832-021-00235-w

Download citation

Keywords

  • SOFC
  • LSC interlayer
  • Sputtering
  • Polarization resistance