The performance of intermediate temperature solid oxide fuel cells with sputter deposited La1-xSrxCoO3 interlayer


The paper studies the performance of the intermediate temperature solid oxide fuel cells with the sputter deposited La1-xSrxCoO3 (LSC) interlayer between the cathode and electrolyte. The sputter deposition of the LSC thin films is carried out in argon gas and in a mixture of argon and oxygen gases and then are annealed at 600, 800 and 1000 °C in air for 2 h. The structure and composition of the sputter deposited LSC films are investigated by the X-ray diffraction analysis, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. The polarization resistance of the sputter deposited LSC films (600 nm thick) on the symmetric cells is 0.13, 0.45 and 2.48 Ohm·cm2 measured at 800, 700 and 600 °C, respectively. Measurements are performed by electrochemical impedance spectroscopy. The maximum power density of the anode-supported solid oxide fuel cells with the yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte, LSC interlayer, and LSC cathode is 2.27, 1.58 and 0.68 W/cm2 measured at 800, 700 and 600 °C, respectively. These values of the power density are respectively 1.4, 1.6 and 2.3 times higher than that of the reference cell without the LSC interlayer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    J. Jiang, J.L. Hertz, J. Electroceram. 32(1), 37–46 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    J.H. Park, W. Hong, J. Lee, K.J. Yoon, H. Kim, J. Hong, H.-S. Song, J.-W. Son, J. Electroceram. 33(1-2), 25–30 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    R. Barfod, A. Hagen, S. Ramousse, P.V. Hendriksen, M. Mogensen, Fuel Cells 6(2), 141–145 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    J.H. Park, S.M. Han, B.K. Kim, J.H. Lee, K.J. Yoon, H. Kim, H.I. Ji, J.W. Son, Electrochim. Acta 296, 1055–1063 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    A.A. Samat, M.R. Somalu, A. Muchtar, O.H. Hassan, N. Osman, J. Sol-Gel Sci. Technol. 78(2), 382–393 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    D. Chen, S.R. Bishop, H.L. Tuller, J. Electroceram. 28(1), 62–69 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    S. Okada, S. Miyoshi, S. Yamaguchi, ECS Trans. 68(1), 987–994 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    A.V. Nikonov, N.B. Pavzderin, S.N. Shkerin, O.I. Gyrdasova, A.S. Lipilin, Russ. J. Appl. Chem. 90(3), 369–373 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    J. Yoon, S. Cho, J.H. Kim, J.H. Lee, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, H. Wang, Adv. Funct. Mater. 19(24), 3868–3873 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    B.A. Boukamp, N. Hildebrand, P. Nammensma, D.H.A. Blank, Solid State Ionics 192(1), 404–408 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    N. Hildenbrand, B.A. Boukamp, P. Nammensma, D.H.A. Blank, Solid State Ionics 192(1), 12–15 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    S. Molin, P.Z. Jasinski, Mater. Lett. 189, 252–255 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    H.J. Choi, K. Bae, S. Grieshammer, G.D. Han, S.W. Park, J.W. Kim, D.Y. Jang, J. Koo, J.W. Son, M. Martin, J.H. Shim, Adv. Energy Mater. 8(33), 1802506 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    L. Dieterle, P. Bockstaller, D. Gerthsen, J. Hayd, E. Ivers-Tiffée, U. Guntow, Adv. Energy Mater. 1(2), 249–258 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    S.S. Shin, J.H. Kim, G. Li, S.Y. Lee, J.W. Son, H. Kim, M. Choi, Int. J. Hydrogen Energ. 44(9), 4476–4483 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    F.J. Garcia-Garcia, F. Yubero, A.R. González-Elipe, S.P. Balomenou, D. Tsiplakides, I. Petrakopoulou, R.M. Lambert, Int. J. Hydrogen Energ. 40(23), 7382–7387 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    F.J. Garcia-Garcia, F. Yubero, J.P. Espinós, A.R. González-Elipe, R.M. Lambert, J. Power Sources 324, 679–686 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    H.S. Noh, J. Hong, H. Kim, K.J. Yoon, B.K. Kim, H.W. Lee, J.H. Lee, J.W. Son, J. Electrochem. Soc. 163(7), F613–F617 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    M.R. Weimar, L.A. Chick, D.W. Gotthold, G.A. Whyatt, DOE Report, Cost study for manufacturing of solid oxide fuel cell power systems. (United States, 2013). DOI:

  20. 20.

    J.M. Ralph, A.C. Schoeler, M. Kumpelt, J. Mater. Sci. 36(9), 1161–3143 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    A. Ringuedé, J. Fouletier, Solid State Ionics 139(3-4), 167–177 (2001).

    Article  Google Scholar 

  22. 22.

    A. Bieberle-Hütter, H.L. Tuller, J. Electroceram. 16(2), 151–157 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    E.A. Smolyanskiy, S.A. Linnik, I.V. Ionov, A.V. Shipilova, V.A. Semenov, A.L. Lauk, A.A. Solovyev, J. Phys. Conf. Ser. 1115, 032080 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    P. Lippens, U. Muehlfeld Indium Tin Oxide (ITO): Sputter Deposition Processes. In: Handbook of Visual Display Technology. Chen J., Cranton W., Fihn M. (eds). Springer, Berlin, Heidelberg (2012). DOI:

  25. 25.

    A.A. Solovyev, A.V. Shipilova, I.V. Ionov, A.N. Kovalchuk, S.V. Rabotkin, V.O. Oskirko, J. Electron. Mater. 45(8), 3921–3928 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    N.M.L.N.P. Closset, R.H.E. van Doorn, H. Kruidhof, Powder Diffraction 11(1), 31 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    C.R. Gobbiner, M.A.A. Veedu, D. Kekuda, Appl. Phys. A Mater. Sci. Process. 122(4), 272 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    K. Tominaga, S. Iwamura, Y. Shintani, O. Tada, Jpn. J. Appl. Phys. 21, 688 (1982).

    CAS  Article  Google Scholar 

  29. 29.

    H.C. Nguyen, T.T. Trinh, T. Le, C.V. Tran, T. Tran, H. Park, V.A. Dao, J. Yi, Semicond. Sci. Technol. 26(10), 105022 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    S.A.M. Ali, M. Anwar, N.A. Baharuddin, M.R. Somalu, A. Muchtar, J. Solid State Electrochem. 22(1), 263–273 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Tao, J. Shao, W.G. Wang, J. Wang, Fuel Cells 9(5), 679–683 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Q. Su, D. Yoon, Y.N. Kim, W. Gong, A. Chen, S. Cho, A. Manthiram, A.J. Jacobson, H. Wang, J. Power Sources 218, 261–267 (2012).

    CAS  Article  Google Scholar 

Download references


This work was supported by Grant No. 17-79-30071 from the Russian Science Foundation. The authors are grateful to the administration of the Institute of Electrophysics of the Ural Division RAS for providing EIS measurements under the government contract No. 0389-2019-0004.

Author information



Corresponding author

Correspondence to A. A. Solovyev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solovyev, A.A., Shipilova, A.V., Ionov, I.V. et al. The performance of intermediate temperature solid oxide fuel cells with sputter deposited La1-xSrxCoO3 interlayer. J Electroceram (2021).

Download citation


  • SOFC
  • LSC interlayer
  • Sputtering
  • Polarization resistance