Effect of Cu addition on the properties of the RF magnetron-sputtered Cu2O thin films


Radio frequency (RF) magnetron sputtering was used to fabricate Cu-doped Cu2O thin using a gas mixture containing 80% Ar and 20% N2 at room temperature. The Cu2O ceramics containing different concentrations of Cu powder (1–7 wt%) were considered to be the sputtering targets. A highly dense Cu-doped Cu2O target was essential to obtain excellent quality Cu2O films; this target can be obtained via the hot-pressing process because the low melting point (1084.6 °C) of Cu allows enhanced densification of the Cu2O target through a liquid-phase wetting mechanism. X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) were performed to characterize the Cu2O film microstructure. Our results denoted that Cu doping enhances the densification and increases the grain size of the Cu2O films. Further, the crystal structures of the films changed from CuO and Cu4O3 to Cu2O when the Cu doping concentration increased from 1 to 7 wt%. A dense and well-defined columnar morphology can be observed when TEM was used to observe the film microstructure. Subsequently, the electrical and optical properties of the Cu2O thin films were evaluated at different Cu concentrations. The electrical resistivity of the Cu2O films became 8.6 Ω·cm when the Cu doping concentration was 7 wt%, corresponding to a carrier density of 9.8 × 1016 cm−3 and a mobility of 7.5 cm2/Vs. Furthermore, the optical transmission of the Cu2O films doped with Cu was greater than 60%. The band gaps of the films ranged from 2.32 to 2.54 eV depending on the copper oxide phases present in the films.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Y. Nakano, S. Saeki, T. Morikawa, Appl. Phys. Lett. 94, 022111 (2009)

    Article  Google Scholar 

  2. 2.

    W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin, Z. Huang, Materials 11, 1253 (2018)

    Article  Google Scholar 

  3. 3.

    D. Ozaslana, O.M. Ozkendir, M. Gunes, Y. Ufuktepea, C. Gumus, Optik 157, 1325 (2018)

    Article  Google Scholar 

  4. 4.

    D.K. Negar, K. Reza, K.E. Saeideh, M.P. Saeid, R. Seeram, J.Y .Hu 9, 1011 (2019)

    Google Scholar 

  5. 5.

    A. Rydosz, Coating 8, 425 (2018)

    Article  Google Scholar 

  6. 6.

    A. Da Cas Viegas, Thin Solid Films 562, 144 (2014)

    Article  Google Scholar 

  7. 7.

    L. Zhang, Q. Li, H. Xue, H. Pang, ChemSusChem 11, 1581 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    T. Minami, Y. Nishi, T. Miyata, Y. Nishi, Solar Energy 105, 206 (2014)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Aljlan, F. Placido, H.O. Chu, R.D. Bold, L. Fleming, D. Gibson, Thin Solid Films 642, 45 (2017)

    Article  Google Scholar 

  10. 10.

    Y.G. Lee, J.R. Wang, M.J. Chuang, D.W. Chen, K.H. Hou, Int. J. Electrochem. Sci. 12, 507 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    J.B. Liang, N. Kishi, T. Soga, T. Jimbo, M.S. Ahmed, Thin Solid Film 520, 2679 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    L. Armelao, D. Barreca, M. Bertapelle, G. Bottaro, C. Sada, Thin Solid Films 442, 48 (2003)

    CAS  Article  Google Scholar 

  13. 13.

    X. Liu, M. Xu, X. Zhang, W. Wang, X. Feng, A. Song, Appl. Surf. Sci. 435, 305 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    H. Kim, M.Y. Lee, S.H. Kim, S.I. Bae, K.Y. Ko, H. Kim, K.W. Kwon, J.H. Hwang, D.J. Lee, Applied Surface Science 349, 673 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    H. Zhu, J. Zhang, C. Li, F. Pan, T. Wang, B. Huang, Thin Solid Films 517, 5700 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    H.C. Lu, C.L. Chu, C.Y. Lai, Y.H. Wang, Thin Solid Films 517, 4408 (2009)

    CAS  Article  Google Scholar 

  17. 17.

    S. Masudy-Panah, K. Radhakrishnan, A. Kumar, T.I. Wong, R. Yi, G.K. Dalapati, J. of Appl. Phys. 118, 225301 (2015)

    Article  Google Scholar 

  18. 18.

    Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F.S. Oldera, D. Horwat, F. Mucklich, J.F. Pierson, Phys. Rev. B 94, 245418 (2016)

    Article  Google Scholar 

  19. 19.

    V.F. Drobny, D.L. Pulfrey, Thin Solid Films 61, 89 (1979)

    CAS  Article  Google Scholar 

  20. 20.

    S.C. Siah, Y.S. Lee, Y. Segal, T. Buonassisi, J. Appl. Phys. 112, 084508 (2012)

    Article  Google Scholar 

  21. 21.

    H.J. Li, C.Y. Pu, C.Y. Ma, S.H. Li, W.J. Dong, S.Y. Bao, Q.Y. Zhang, Thin Solid Films 520, 212 (2011)

    CAS  Article  Google Scholar 

  22. 22.

    S.H. Lee, S.J. Yun, J.W. Lim, ETRI Journal 35, 1156 (2013)

    Article  Google Scholar 

  23. 23.

    J.E. Morris, M.I. Ridge, C.A. Bishop, R.P. Howson, J. Appl. Phys. 51, 1847 (1980)

    CAS  Article  Google Scholar 

  24. 24.

    S. Chaudhuri, J. Bhattacharyya, A.K. Pal, Thin Solid Films 148, 279 (1987)

    CAS  Article  Google Scholar 

  25. 25.

    W. Zheng, Y. Chen, X. Peng, K. Zhong, Y. Lin, Z. Huang, Materials 11071253, 11 (2018)

    Google Scholar 

  26. 26.

    L. Debbichi, M.C. Marco de Lucas, J.F. Pierson, P. Krüger, J. Phys. Chem. C 116, 10232 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    M. Ivanda, D. Waasmaier, A. Endriss, J. Ihringer, A. Kirfel, W. Kiefer, J. Raman Spectrosc. 28, 487 (1997)

    CAS  Article  Google Scholar 

  28. 28.

    H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting transparent thin films, (Institute of Physics Publishing, Philadelphia, 1995)

  29. 29.

    B. Balamurugan, B.R. Mehta, Thin solid films 96, 90 (2001)

    Article  Google Scholar 

  30. 30.

    A.A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, F. Placido, J. Phys. D Appl. Phys. 38, 266 (2005a)

    CAS  Article  Google Scholar 

  31. 31.

    S. Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, J. Alloy. Comp. 724, 456 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    J.F. Pierson, A. Thobor-Keck, A. Billard, Appl. Surf. Sci. 210, 359 (2003)

    CAS  Article  Google Scholar 

  33. 33.

    P.E.D. Morgan, D.E. Partin, B.L. Chamberland, M.O. Keeffe, J. Solid State Chem. 37, 33 (1996)

    Article  Google Scholar 

Download references


The authors are grateful to Ministry of Science and Technology of Taiwan for the financial support to this work under contract no. MOST-105-2221-E-214-032.

Author information



Corresponding author

Correspondence to Boen Houng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Houng, B., Wu, J.K., Yeh, P.C. et al. Effect of Cu addition on the properties of the RF magnetron-sputtered Cu2O thin films. J Electroceram (2021). https://doi.org/10.1007/s10832-021-00234-x

Download citation


  • Cu2O
  • Microstructure
  • Thin film
  • Electrical and optical properties