Structural, electrical, and magnetic properties of mullite-type Bi2Fe4O9 ceramic


In this work, the synthesis results are reported, and the structural, electrical and magnetic properties of orthorhombic (Pbam) structured bulk Bi2Fe4O9 synthesized through the solid-state reaction process have been studied. Bi2Fe4O9 has been investigated using several ecperimental techniques, such as X-ray diffraction, scanning electron microscopy, Raman spectroscopy, dielectric as well as magnetometry. The Rietveld refined X-ray diffraction data and Raman spectroscopy results clearly revealed the formation of Bi2Fe4O9 perovskite structure and all the peaks of Bi2Fe4O9 perfectly indexed with the orthorhombic (Pbam) structure. It has been established that the Raman spectrum identified Ag, B2g, and B3g active optical phonon modes, and the Raman peak at 470 cm−1 possibly have a magnetic origin. As a result, the coexistence of weak ferromagnetic and antiferromagnetic orders in Bi2Fe4O9 ceramic was established. The remnant magnetization (2Mr) and coercivity (2Hc) are 8.74 × 10−4 emu/g and 478.8 Oe, respectively. We report the significant multifarroic effects in polycrystalline Bi2Fe4O9 ceramics. These characteristics make this material very useful in technological and practical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    H. Schmid, J. Phys. Condens. Matter. 20(43), 434201 (2008)

    Article  Google Scholar 

  2. 2.

    P. Roni, The Perovskite Handbook. Metalgrass Ltd, (2018) p. 108

  3. 3.

    T.-J. Park, G.C. Papaefthymiou, A.R. Moodenbaugh, Y. Mao, S.S. Wong, J. Mater. Chem. 15(21), 2099–2105 (2005)

    CAS  Article  Google Scholar 

  4. 4.

    H. Liu, L. Li, C. Guo, J Ning, Y Zhong, Yong Hu. Chem. Eng. J. 385, 123929 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    H. Yang, J. Dai, L. Wang, Y. Lin, F. Wang, P. Kang, Sci. Rep. 7(1), 768 (2017)

    Article  Google Scholar 

  6. 6.

    A.S. Poghossian, H.V. Abovian, P.B. Avakian, S.H. Mkrtchian, V.M. Haroutunian, Sensors & Actuators B: Chem. 4(3-4), 545–549 (1991)

    Article  Google Scholar 

  7. 7.

    N. Shamir, E. Gurewitz, Acta Cryst. A 34(5), 662–666 (1978)

    Article  Google Scholar 

  8. 8.

    N. Niizeki, M. Wachi, Z. Fur, Kristallogr. 127(1-4), 173–187 (1968)

    CAS  Article  Google Scholar 

  9. 9.

    M.N. Iliev, A.P. Litvinchuk, V.G. Hadjiev, M.M. Gospodinov, V. Skumryev, E. Ressouche, Phys. Rev. B 81(2), 024302 (2010)

    Article  Google Scholar 

  10. 10.

    A.K. Singh, S.D. Kaushik, B. Kumar, P.K. Mishra, A. Venimadhav, V. Siruguri, S. Patnaik, Appl. Phys. Lett. 92(13), 132910 (2008)

    Article  Google Scholar 

  11. 11.

    A. Verma, T.C. Goel, R.G. Mendiratta, M.I. Alam, Mater. Sci. Eng. B 60(2), 156–162 (1999)

    Article  Google Scholar 

  12. 12.

    S.K. Rao, E.M. Abhinav, D. Jaison, A. Sundararaj, M. Santhiya, R. Althaf, C. Gopalakrishnan, Vacuum 172, 109109 (2020)

    Article  Google Scholar 

  13. 13.

    S. Ameer, K. Jindal, M. Tomar, P.K. Jha, V. Gupta, J. Magn. Magn. Mater. 475, 695–702 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    S. Ameer, K. Jindal, M. Tomar, P.K. Jha, V. Gupta, J. Magn. Magn. Mater. 509, 166893 (2020)

    CAS  Article  Google Scholar 

  15. 15.

    M. Pooladi, H. Shokrollahi, S.A.N.H. Lavasani, H. Yang, Mater. Chem. Phys. 229, 39–48 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    A.K. Moghadam, O. Mirzaee, H. Shokrollahi, S.A.N.H. Lavasani, Ceram. Int. 45(7), 8087–8094 (2019)

    CAS  Article  Google Scholar 

  17. 17.

    M.V. Zdorovets, A.L. Kozlovskiy, J. Alloys Compd. 815, 152450 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    A.L. Kozlovskiy, I.E. Kenzhina, M.V. Zdorovets, Ceram. Int. 46(8), 10262–10269 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    V.S. Rusakov, K.K. Kadyzhanov, A.L. Kozlovskiy, M.S. Fadeev, M.V. Zdorovets, Ceram. Int. 46(2), 1586–1595 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    A. Kozlovskiy, I. Kenzhina, M. Zdorovets, Ceram. Int. 45(7), 8669–8676 (2019)

    CAS  Article  Google Scholar 

  21. 21.

    A. Kozlovskiy, K. Dukenbayevd, I. Kenzhinaa, D. Tosid, M. Zdorovetsa, Vacuum 155, 412–422 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    J. Rodriguez-Carvajal, Physica B 192(1-2), 55–69 (1993)

    CAS  Article  Google Scholar 

  23. 23.

    M.V. Zdorovets, A.L. Kozlovskiy, Ceram. Int. 45, 14548–14557 (2020)

    Article  Google Scholar 

  24. 24.

    D. Cai, D. Du, S. Yu, J. Cheng, Procedia Eng. 27, 577–582 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    Z.M. Tian, Y. Qiu, S.L. Yuan, M.S. Wu, S.X. Huo, and. H.N. Duan, J. Appl. Phys. 108 (2010) 064110

  26. 26.

    A.T. Bell, Science 299(5613), 1688–1691 (2003)

    CAS  Article  Google Scholar 

  27. 27.

    Z.S. Liu, B.T. Wu, D.G. Yin, Y.B. Zhu, L.G. Wang, J. Mater. Sci. 47(19), 6777–6783 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    A. Friedrich, J. Biehler, W. Morgenroth, L. Wiehl, B. Winkler, M. Hanfland, M. Tolkiehn, M. Burianek, M. Muhlberg, J. Phys. Condens. Matter 24(14), 145401 (2012)

    Article  Google Scholar 

  29. 29.

    M.J. Massey, U. Baier, R. Merlin, W.H. Weber, Phys. Rev. B 41(11), 7822–7827 (1990)

    CAS  Article  Google Scholar 

  30. 30.

    A.P. Litvinchuk, L. Börjesson, C. Thomsen, C.W. Chu, Phys. Status Solidi B 215(1), 507–512 (1999)

    CAS  Article  Google Scholar 

  31. 31.

    J. Holmlund, C.S. Knee, J. Andreasson, M. Granath, A.P. Litvinchuk, L. Börjesson, Phys. Rev. B 79(8), 085109 (2009)

    Article  Google Scholar 

  32. 32.

    R.M. White, R.J. Nemanich, C. Herring, Phys. Rev. B 25(3), 1822–1836 (1982)

    CAS  Article  Google Scholar 

  33. 33.

    Y.A. Park, K.M. Song, N. Hur, J. Kor. Phys. Soc. 53(6), 3356–3360 (2008)

    CAS  Article  Google Scholar 

  34. 34.

    A. Shukla, R.N.P. Choudhary, J. Mater. Sci. 47(13), 5074–5085 (2012)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Yamazaki, M. Satou, Jap. J. Appl. Phys. 12(7), 998–1000 (1973)

    CAS  Article  Google Scholar 

  36. 36.

    A.K. Jonscher, J. Phys. D. Appl. Phys. 32, R57 (1996)

    Article  Google Scholar 

  37. 37.

    M.A. El Hiti, J. Phys. D. Appl. Phys. 29(3), 501–505 (1996)

    Article  Google Scholar 

  38. 38.

    A. Panda, R. Govindaraj, G. Amarendra, Physica B: Cond. Matter. 570, 206–208 (2019)

    CAS  Article  Google Scholar 

  39. 39.

    X. Yuan, L. Shi, J. Zhao, S. Zhou, J. Guo, Scripta Matter. 146, 55–59 (2018)

    CAS  Article  Google Scholar 

  40. 40.

    T. Liu, Y. Xu, C. Zeng, Mater. Sci. Eng. B 176(7), 535–539 (2011)

    CAS  Article  Google Scholar 

  41. 41.

    J.L. Dormann, M. Nogues, J. Phys. Condens. Matter 2(5), 1223–1237 (1990)

    CAS  Article  Google Scholar 

Download references


We acknowledge the financial support from National Natural Science Foundation of China under grant number 11774276 and 51074131. The authors are grateful to Dr. S. Satapathy for their long-term collaboration and numerous fruitful discussions.

Author information



Corresponding authors

Correspondence to Poorva Sharma or Ashwini Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Kumar, A., Jingyou, T. et al. Structural, electrical, and magnetic properties of mullite-type Bi2Fe4O9 ceramic. J Electroceram (2021).

Download citation


  • Multiferroic
  • Bi2Fe4O9
  • Raman spectroscopy
  • Magnetic measurement