Phase developments in Pb(Zn[Ta,Nb,W])O3-PbTiO3 ternary ceramic compositions

Abstract

The hard-to-synthesize lead-based zinc-bearing trio of Pb(Zn1/3Ta2/3)O3, Pb(Zn1/3Nb2/3)O3, and Pb(Zn1/2W1/2)O3 (PZT, PZN, and PZW) were investigated to understand their structural stability and phase formation. A structure field map is used to discuss the capability of the trio compositions and combinations thereof, to form the perovskite structure, with PbTiO3(PT) introduced as a perovskite stabilizer. We identified the potential omission of the (111) reflections in two International Centre for Diffraction Data (ICDD) sets of a complex-rutile structure, [(Zn1/3Ta2/3)1/2Ti1/2]O2 and [(Zn1/3Nb2/3)1/2Ti1/2]O2, and suggest that the intensities of the latter compound need to be re-examined. The perovskite structure started to develop at different fractions of PT, depending upon the species of the trio: PZN required the smallest amount of PT (< 20 mol%), whereas PZW required the greatest (≤ 80 mol%). The perovskite-stable composition area was the widest in PZT-PZN-PT and narrowest in PZW-PZT-PT, indicating the comparative ease/difficulty of perovskite formation among the trio compositions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1

    G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys.-Tech. Phys. 3(7), 1380–1382 (1958)

    CAS  Google Scholar 

  2. 2

    G.A. Smolenskii, A.I. Agranovskaya, S.N. Popov, Sov. Phys.-Solid State 1(1), 147–148 (1959)

    Google Scholar 

  3. 3

    G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys.-Solid State 1(10), 1429–1437 (1960)

    Google Scholar 

  4. 4

    W.A. Bonner, L.G. VanUitert, Mater. Res. Bull. 2(1), 131–134 (1967)

    CAS  Article  Google Scholar 

  5. 5

    G.A. Smolenskii, J. Phys. Soc. Jpn. 28(suppl), 26–37 (1970)

  6. 6

    N. Setter, L.E. Cross, J. Crystal Growth 50(2), 555–556 (1980)

    CAS  Article  Google Scholar 

  7. 7

    S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17(10), 1245–1250 (1982)

    CAS  Article  Google Scholar 

  8. 8

    S. Nomura, T. Takahashi, Y. Yokomizo, J. Phys. Soc. Jpn. 27(1), 262 (1969)

    CAS  Article  Google Scholar 

  9. 9

    Y. Yokomizo, S. Nomura, J. Phys. Soc. Jpn. 28(suppl), 150–152 (1970)

  10. 10

    Y. Yokomizo, T. Takahashi, S. Nomura, J. Phys. Soc. Jpn. 28(5), 1278–1284 (1970)

    CAS  Article  Google Scholar 

  11. 11

    S. Nomura, H. Arima, Jpn. J. Appl. Phys. 11(3), 358–364 (1972)

    CAS  Article  Google Scholar 

  12. 12

    D.-H. Lee, N.-K. Kim, Mater. Lett. 34(3–6), 299–304 (1998)

    CAS  Article  Google Scholar 

  13. 13

    M.-C. Chae, N.-K. Kim, J.-J. Kim, S.-H. Cho, J. Mater. Sci. 33(5), 1343–1348 (1998)

    CAS  Article  Google Scholar 

  14. 14

    M.-C. Chae, N.-K. Kim, J.-J. Kim, S.H. Cho, Ferroelectrics 211(1–4), 25–39 (1998)

    CAS  Article  Google Scholar 

  15. 15

    B.-Y. Ahn, N.-K. Kim, J. Am. Ceram. Soc. 83(7), 1720–1726 (2000)

    CAS  Article  Google Scholar 

  16. 16

    B.-H. Lee, N.-K. Kim, Mater. Lett. 62(1), 137–139 (2008)

    CAS  Article  Google Scholar 

  17. 17

    B.-Y. Ahn, T.-K. Park, N.-K. Kim, Ceram. Int. 37(2), 549–553 (2011)

    CAS  Article  Google Scholar 

  18. 18

    V.A. Bokov, I.E. Myl’nikova, Sov. Phys.-Solid State 2(11), 2428–2432 (1961)

    Google Scholar 

  19. 19

    H.M. Jang, S.H. Oh, J.H. Moon, J. Am. Ceram. Soc. 75(1), 82–88 (1992)

    CAS  Article  Google Scholar 

  20. 20

    Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru, M. Koizumi, J. Am. Ceram. Soc. 52(9), 516–517 (1969)

    CAS  Article  Google Scholar 

  21. 21

    J. Wang, D. Wan, J. Xue, W.B. Ng, J. Am. Ceram. Soc. 82(2), 477–479 (1999)

    CAS  Article  Google Scholar 

  22. 22

    J. Wang, J. Xue, D. Wan, Solid State Ionics 127(1–2), 169–175 (2000)

    CAS  Article  Google Scholar 

  23. 23

    B.-Y. Ahn, N.-K. Kim, Mater. Res. Bull. 35(10), 1677–1687 (2000)

    CAS  Article  Google Scholar 

  24. 24

    M.-C. Chae, S.-M. Lim, N.-K. Kim, Ferroelectrics 242(1–4), 25–35 (2000)

    CAS  Article  Google Scholar 

  25. 25

    B.-Y. Ahn, N.-K. Kim, J. Mater. Sci. 37(21), 4697–4701 (2002)

    CAS  Article  Google Scholar 

  26. 26

    J.-S. Kim, N.-K. Kim, H. Kim, J. Am. Ceram. Soc. 86(6), 929–933 (2003)

    CAS  Article  Google Scholar 

  27. 27

    J.-A. Lee, N.-K. Kim, Mater. Lett. 59(1), 32–35 (2005)

    CAS  Article  Google Scholar 

  28. 28

    J.-A. Lee, N.-K. Kim, Mater. Res. Bull. 40(10), 1839–1846 (2005)

    CAS  Article  Google Scholar 

  29. 29

    K.-H. Seo, B.-H. Lee, N.-K. Kim, J. Ko, J. Mater. Sci. 40(23), 6151–6156 (2005)

    CAS  Article  Google Scholar 

  30. 30

    W.-J. Lee, N.-K. Kim, J. Mater. Sci. 43(10), 3608–3611 (2008)

    CAS  Article  Google Scholar 

  31. 31

    W.-J. Lee, J.-S. Kim, N.-K. Kim, J. Eur. Ceram. Soc. 27(16), 4473–4478 (2007)

    CAS  Article  Google Scholar 

  32. 32

    S.-H. Cho, B.-H. Lee, N.-K. Kim, Ceram. Int. 35(4), 1611–1616 (2009)

    CAS  Article  Google Scholar 

  33. 33

    A. Halliyal, U. Kumar, R.E. Newnham, L.E. Cross, Am. Ceram. Soc. Bull. 66(4), 671–676 (1987)

    CAS  Google Scholar 

  34. 34

    T.R. Shrout, A. Halliyal, Am. Ceram. Soc. Bull. 66(4), 704–711 (1987)

    CAS  Google Scholar 

  35. 35

    C.A. Randall, A.S. Bhalla, T.R. Shrout, L.E. Cross, J. Mater. Res. 5(4), 829–834 (1990)

    CAS  Article  Google Scholar 

  36. 36

    N. Wakiya, K. Shinozaki, N. Mizutani, J. Am. Ceram. Soc. 80(12), 3217–3220 (1997)

    CAS  Article  Google Scholar 

  37. 37

    L. Zhou, P.M. Vilarinho, J.L. Baptista, Mater. Res. Bull. 29(11), 1193–1201 (1994)

    CAS  Article  Google Scholar 

  38. 38

    B.-H. Lee, N.-K. Kim, J.-J. Kim, S.-H. Cho, Ferroelectrics 211(1–4), 233–247 (1998)

    CAS  Article  Google Scholar 

  39. 39

    S. Ananta, N.W. Thomas, J. Eur. Ceram. Soc. 19(2), 155–163 (1999)

    CAS  Article  Google Scholar 

  40. 40

    R.D. Shannon, Acta Crystallogr. A32(5), 751–767 (1976)

    CAS  Article  Google Scholar 

  41. 41

    W.F. Smith, J. Hashemi, Foundations of materials science and engineering, 4th edn. (McGraw-Hill, Seoul, 2008), Fig. 2.9

Download references

Acknowledgements

This study was supported by the Kyungpook National University Research Fund, 2018-21. The authors also express gratitude to D.-H. Seo, who was involved in the early stage of the research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nam-Kyoung Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, BH., Kim, NK. Phase developments in Pb(Zn[Ta,Nb,W])O3-PbTiO3 ternary ceramic compositions. J Electroceram (2021). https://doi.org/10.1007/s10832-021-00230-1

Download citation

Keywords

  • Ceramics
  • X-ray diffraction
  • Pb(Zn1/3Ta2/3)O3(PZT)
  • Pb(Zn1/3Nb2/3)O3(PZN)
  • Pb(Zn1/2W1/2)O3(PZW)
  • PbTiO3(PT)