Effect of calendering on rate performance of Li4Ti5O12 anodes for lithium-ion batteries

Abstract

Lithium titanate (LTO) anodes despite their low specific capacity of 175 mAhg−1 from a low volume change and intercalation voltage of 1.55 V vs lithium are excellent for automotive applications requiring fast and safe charging at times like regenerative braking. The present study focuses exclusively on the effect of calendering on the charging rate of LTO anodes. Calendering is a process where the current collector coated with the electrode, both anode, and the cathode is passed between two rolls at an elevated temperature to compact and improve the electrode’s energy density and electrochemical performance. The anode, LTO coated on aluminum foil current collector, calendered at about 42% (i.e. reducing the thickness of uncalendered anode from ~175 to ~100 μm) showed exceptional capacity retention even at 10C rate. Rate performance analyses reveal that calendering improves the capacity at high C-rate, whereas it doesn’t impact significantly at low C-rate. Electrochemical impedance spectroscopy measurements show that the resistive losses decrease with calendering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    H. Zheng, L. Tan, G. Liu, X. Song, V.S. Battaglia, J. Power Sources 208, 52–57 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    Y. Sheng, C.R. Fell, Y.K. Son, B.M. Metz, J. Jiang, C. Benjamin, Church Front. Energy Res. 2, 56 (2014)

    Google Scholar 

  3. 3.

    J. Shim, K.A. Striebel, J. Power Sources 119–121, 934–937 (2003)

    Article  Google Scholar 

  4. 4.

    I.V. Thorat, D.E. Stephenson, N.A. Zacharias, K. Zaghib, J.N. Harb, D.R. Wheeler, J. Power Sources 188, 592 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    X. Sun, P.V. Radovanovic, B. Cui, New J. Chem. 39, 38–63 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    C.P. Sandhya, B. John, C. Gouri, Ionics 20, 601–620 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    G.N. Zhu, Y.-G. Wang, Y.-Y. Xia, Energy Environ. Sci. 5(5), 6652 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    T.F. Yi, L.J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, H.-B. Qiao, J. Phys. Chem. Solids 71(9), 1236–1242 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 81, 300 (1999)

    Article  Google Scholar 

  10. 10.

    K. Mukai, Y. Kato, H. Nakano, J. Phys. Chem. C 118(6), 2992–2999 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142(5), 1431–1435 (1995)

    CAS  Article  Google Scholar 

  12. 12.

    M.G. Verde, L. Baggetto, N. Balke, G.M. Veith, J.K. Seo, Z. Wang, Y.S. Meng, ACS Nano 104, 4312–4321 (2016)

    Article  Google Scholar 

  13. 13.

    Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Electrochem. Energy Rev. 2(1), 1–28 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    J.T. Warner. Lithium-ion Battery Chemistries: A Primer, Elsevier, (2019)

  15. 15.

    S.-T. Myung, Y. Hitoshi, Y.-K. Sun, J. Mater. Chem. 21(27), 9891 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    E. Ligneel, B. Lestriez, D. Guyomard, J. Power Sources 174(2), 716–719 (2007)

    CAS  Article  Google Scholar 

  17. 17.

    D. Liu, L. Chen, T. Liu, T. Fan, Adv. Chem. Eng. Sci. 4, 515–528 (2014)

    Article  Google Scholar 

  18. 18.

    S. Bhattacharya, A.K. Agarwal, T. Rajagopalan, V.K. Patel, Nano-Energetic Mater. (2019). https://doi.org/10.1007/978-981-13-3269-2

  19. 19.

    H. Zheng, L. Gao, X. Song, P. Ridgway, S. Xun, V.S. Battaglia, J. Electrochem. Soc. 157(10), A1060–A1066 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    A. van Bommel, R. Divigalpitiya, J. Electrochem. Soc. 159(11), A1791–A1795 (2012)

    Article  Google Scholar 

  21. 21.

    B. Priyono, P.B. Murti, A.Z. Syahrial, A. Subhan, AIP Conf. Proc. 1826, 020005 (2017)

    Article  Google Scholar 

  22. 22.

    J. Illig, T. Chrobak, D. Klotz, E. Ivers-Tiffée, ECS Trans. 33, 3–15 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    J.-H. Choi, W.-H. Ryu, K. Park, J.-D. Jo, S.-M. Jo, D.-S. Lim, I.-D. Kim, Sci. Rep. 4, 7334 (2014)

    CAS  Article  Google Scholar 

  24. 24.

    J. Shim, K.A. Striebel, J. Power Sources 130(1-2), 247–253 (2004)

    CAS  Article  Google Scholar 

  25. 25.

    B. Ziebarth, M. Klinsmann, T. Eckl, C. Elsasser, Phys. Rev. B - Condens. Matter Mater. Phys. 89, 174301 (2014)

    Article  Google Scholar 

  26. 26.

    C.Y. Ouyang, Z.Y. Zhong, M.S. Lei, Electrochem. Commun. 9(5), 1107–1112 (2007)

    CAS  Article  Google Scholar 

  27. 27.

    P.C. Tsai, W.D. Hsu, S.K. Lin, J. Electrochem. Soc. 161(3), A439–A444 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Y.R. Jhan, J.G. Duh, Electrochim. Acta 63, 9–15 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    H. Song et al., Sci. Rep. 4, 4350 (2014)

    Article  Google Scholar 

  30. 30.

    H. Ge, N. Li, D. Li, C. Dai, D. Wang, J. Phys. Chem. C 113(16), 6324–6326 (2009)

    CAS  Article  Google Scholar 

  31. 31.

    X. Han, M. Ouyang, L. Lu, J. Li, Energies 2014(7), 4895–4909 (2014)

    Article  Google Scholar 

  32. 32.

    J. Illig, M. Ender, T. Chrobak, J.P. Schmidt, D. Klotz, E. Ivers-Tiffée, J. Electrochem. Soc. 159(7), A952–A960 (2012)

    CAS  Article  Google Scholar 

  33. 33.

    D.J. Robles, C.F. Chen, Y. Barsukov, P.P. Mukherjee, J. Electrochem. Soc. 164(4), A837–A847 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

Truptimayee Acharya is grateful to the Council of Scientific & Industrial Research (CSIR), HRDG, India for providing the prestigious CSIR Research Associateship, India through CSIR Award Letter No. 09/1059(0014)/2018-EMR-I dated 17.04.2018 and IIT Bhubaneswar for the support during the fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soobhankar Pati.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acharya, T., Chaupatnaik, A., Pathak, A. et al. Effect of calendering on rate performance of Li4Ti5O12 anodes for lithium-ion batteries. J Electroceram (2021). https://doi.org/10.1007/s10832-020-00227-2

Download citation

Keywords

  • Lithium-ion batteries
  • Electrode thickness
  • Lithium titanate (LTO)
  • Calendering