Effects of Ca2+, Mg2+, Na+, and K+ substitutions on the microstructure and electrical properties of GdCoO3 ceramics


GdCoO3-δ, Gd0.975Na0.025CoO3-δ, Gd0.98K0.02CoO3-δ, Gd0.98Ca0.02CoO3-δ, and GdCo0.99Mg0.01O3-δ ceramics were prepared via a solid-state reaction route. Among the dopants studied, substitution with Ca2+ slightly enhanced the densfication of GdCoO3 ceramics. All the lattice parameters of the doped ceramics were larger than those of pure GdCoO3-δ ceramic (a = 5.223 Å, b = 5.389 Å and c = 7.451 Å), and their cell volumes increased by 0.30% to 1.40% because the substitution ions were larger in size. X-ray diffraction and scanning electron microscopy results indicate that no second phase is present. The average grain size of the GdCoO3 ceramics (7.6 μm) slightly increased by the Na+, K+ and Mg2+ substitutions and decreased by the Ca2+ substitution. In all cases, the intergranular fracture surfaces revealed the presence of trapped pores due to rapid grain growth. The oxidation states and percentages of Co ions were determined from the Co 2p X-ray photoelectron spectra. Na+, K+, Ca2+, and Mg2+ substitution in the GdCoO3-δ ceramic resulted in slight oxidation of the Co ions accompanied by a decrease in oxygen vacancies. After porosity correction using the Bruggeman effective medium approximation, Gd0.98Ca0.02CoO3-δ had the largest electrical conductivity at all measured temperatures among the compositions studied, which was 144% higher at 500 °C and 16% higher at 800 °C compared to those of GdCoO3-δ ceramic (500 °C: 133.3 S·cm−1; 800 °C: 692.4 S·cm−1). The substantial increase in the electrical conductivity of the doped GdCoO3-δ ceramics is due to the electronic compensation of acceptor doping, \( {\mathrm{N}a}_{Gd}^{"} \), \( {K}_{Gd}^{"} \), and \( {Ca}_{Gd}^{\prime } \), which resulted in the formation of hole carriers and the elimination of oxygen vacancies (\( {V}_o^{\bullet \bullet } \)), which generated additional Co4+ (\( {Co}_{Co}^{\bullet } \)).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    M.D. Mat, X. Liu, Z. Zhu, B. Zhu, Int. J. Hydrogen Energy 32(7), 796–801 (2007)

    CAS  Article  Google Scholar 

  2. 2.

    T.L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z.R. Zhang, H. Nie, Solid State Ionics 148(3-4), 513–519 (2002)

    CAS  Article  Google Scholar 

  3. 3.

    C. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 14(7), 1125–1144 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    W.G. Guo, J. Liu, C. Jin, H. Gao, Y. Zhang, J. Alloys Compd. 473(1-2), 43–47 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    M. Prestat, J.F. Koenig, L.J. Gauckler, J. Electroceram. 18(1-2), 87–101 (2007)

    Article  Google Scholar 

  6. 6.

    R.K. Lenka, T. Mahata, P.K. Patro, A.K. Tyagi, P.K. Sinha, J. Alloys Compd. 537, 100–105 (2012)

    CAS  Article  Google Scholar 

  7. 7.

    S. Dimitrovska-Lazova, S. Aleksovska, V. Mirceski, K. Pecovska-Gjorgjevich, J. Solid State Electrochem. 23(3), 861–870 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    Y.S. Orlov, L.A. Solovyov, V.A. Dudnikov, A.S. Fedorov, A.A. Kuzubov, N.V. Kazak, V.N. Voronov, Phys. Rev. B 88(23), 235105 (2013)

    Article  Google Scholar 

  9. 9.

    N.K. Gaur, R. Thakur, R.K. Thakur, Solid State Phys. AIP Conf. Proc. 1512, 1208 (2013)

    CAS  Google Scholar 

  10. 10.

    L.B. Kilius, V. Krstic, J. Power Sources 194(2), 690–696 (2009)

    CAS  Article  Google Scholar 

  11. 11.

    J.M. Ralph, C. Rossignol, R. Kumar, J. Electrochem. Soc. 150, A518 (2003)

    Article  Google Scholar 

  12. 12.

    C. Rossignol, J.M. Ralph, J.M. Bae, J.T. Vaughey, Solid State Ionics 175(1-4), 59–61 (2004)

    CAS  Article  Google Scholar 

  13. 13.

    Y. Ji, H. Wang, H. Zhang, Mater. Res. Bull. 85, 30–34 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    Y. Takeda, H. Ueno, N. Imanishi, O. Yamamotoa, N. Sammesb, M.B. Phillippsb, Solid State Ionics 86-88, 1187–1190 (1996)

    CAS  Article  Google Scholar 

  15. 15.

    M.B. Phillipps, N.M. Sammes, O. Yamamoto, Solid State Ionics 123(1-4), 131–138 (1999)

    CAS  Article  Google Scholar 

  16. 16.

    L. Santos-Gómez, L. León-Reina, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, Solid State Ionics 239, 1–7 (2013)

    Article  Google Scholar 

  17. 17.

    M.S. Platunova, V.A. Dudnikov, Y.S. Orlov, N.V. Kazak, L.A. Solovyov, Y.V. Zubavichus, A.A. Veligzhanin, P.V. Dorovatovskii, S.N. Vereshchagin, K.A. Shaykhutdinova, S.G. Ovchinnikov, JETP Lett.+ 103, 196 (2016)

    Article  Google Scholar 

  18. 18.

    L. Gildo-Ortiz, V.M. Rodriguez-Betancourtt, O. Blanco-Alonso, A. Guillen-Bonilla, J.T. Guillen-Bonilla, A. Guillen-Cervantes, J. Santoyo-Salazar, H. Guillen-Bonilla, Results Phys. 12, 475–483 (2019)

    Article  Google Scholar 

  19. 19.

    S.S. Pramana, A. Cavallaro, C. Li, A.D. Handoko, K.W. Chan, R.J. Walker, A. Regoutz, J.S. Herrin, B.S. Yeo, D.J. Payne, J.A. Kilner, M.P. Ryan, S.J. Skinner, J. Mater. Chem. A 6, 5335 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    R. Zhang, Y. Lu, L. We, Z. Fang, C. Lu, Y. Ni, Z. Xu, S. Tao, P. Li, J. Mater. Sci. Mater. Electron. 26(12), 9941–9948 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    Y. Lu, L. Chen, C. Lu, Y. Ni, Z. Xu, J. Rare Earth 31(12), 1183–1190 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    Y.X. Liu, S.F. Wang, Y.F. Hsu, H.W. Kai, P. Jasinski, J. Eur. Ceram. Soc. 38(4), 1654–1662 (2018)

    CAS  Article  Google Scholar 

  23. 23.

    S. Yu, S. He, H. Chen, L. Guo, J. Power Sources 280, 581–587 (2015)

    CAS  Article  Google Scholar 

  24. 24.

    J.A.M. Van Roossmalen, E.E.H. Cordfunke, J. Solid State Chem. 93(1), 212–219 (1991)

    Article  Google Scholar 

  25. 25.

    D.S. Rajoria, V.G. Bhide, G.R. Rao, C.N.R. Rao, J. Chem. Soc. Farada. Trans. 2(70), 512 (1974)

    Article  Google Scholar 

  26. 26.

    H. Taguchi, Physica B 311(3-4), 298–304 (2002)

    CAS  Article  Google Scholar 

  27. 27.

    D. Stroud, Superlattice. Microst. 23(3-4), 567–573 (1998)

    Article  Google Scholar 

Download references


This work was supported by the 5th Polish-Taiwanese/Taiwanese-Polish Joint Research Project PL-TW/V/4/2018 granted by the National Centre for Research and Development of Poland and Ministry of Science and Technology of Taiwan.

Author information



Corresponding author

Correspondence to Sea-Fue Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, SF., Hsu, YF., Liao, YL. et al. Effects of Ca2+, Mg2+, Na+, and K+ substitutions on the microstructure and electrical properties of GdCoO3 ceramics. J Electroceram (2020). https://doi.org/10.1007/s10832-020-00226-3

Download citation


  • GdCoO3-δ
  • XRD
  • Microstructure
  • Electrical conductivity