Abstract
In the present study, SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) ceramics were fabricated by the conventional solid-state reaction. In order to adjust its sintering behavior and energy storage properties of BNKT ceramics, SnO2 doping contents varied at 0.0 ÷ 0.04 M. A suitable amount of SnO2 improved the dielectric properties, affected the relaxor behavior, reduced the energy loss, and also optimized the energy storage performance of BNKT ceramics. Especially, the optimized synthesis procedure for SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics resulted in enhanced the energy storage density of 300% and the energy storage efficiency of 59.1%, respectively. The results suggest that lead-free SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics should be good candidates for energy storage applications in the future.
This is a preview of subscription content, access via your institution.











References
- 1.
L. Dai Vuong, A.Q. Dao, J. Electroceram. 44((1–2), 68–77 (2020)
- 2.
W. Pan, M. Cao, J. Qi, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Alloys Compd. 784, 1303–1310 (2019)
- 3.
P.D. Gio, J. Alloys Compd. 817, 152790 (2020)
- 4.
P.D. Gio, H.Q. Viet, L.D. Vuong, Int. J. Mater. Res. 109(11), 1071–1076 (2018)
- 5.
N. Truong-Tho, N.T. Nghi-Nhan, J. Electron. Mater. 46(6), 3585–3591 (2017)
- 6.
L. Zhang, Z. Wang, Y. Li, P. Chen, J. Cai, Y. Yan, Y. Zhou, D. Wang, G. Liu, J. Eur. Ceram. Soc. 39(10), 3057–3063 (2019)
- 7.
N. Truong-Tho, J. Electron. Mater. 46(11), 6395–6402 (2017)
- 8.
N. Truong-Tho, L.D. Vuong, J. Adv. Dielectr. (2020)
- 9.
O. Mokhtari, H. Nishikawa, J. Mater. Sci. Mater. Electron. 27(5), 4232–4244 (2016)
- 10.
T.T. Nguyen, A. Inoue, M. Noda, M. Okuyama, Low Temperature Preparation of Bismuth-Related Ferroelectrics by Hydrothermal Synthesis, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2603–2607 (2007)
- 11.
N.T. Tho, T. Kanashima, M. Sohgawa, D. Ricinschi, M. Noda, M. Okuyama, Jpn. J. Appl. Phys. 49(9S), 09MB05 (2010)
- 12.
L.D. Vuong, N.T. Tho, Int. J. Mater. Res. 108(3), 222–227 (2017)
- 13.
P.D. Gio, H.T.T. Hoa, J. Mater. Sci. Chem. Eng. 2(11), 20 (2014)
- 14.
L.D. Vuong, P.D. Gio, N.T. Tho, T.V. Chuong, Indian J. Eng. Mater. S. 20, 555–560 (2013)
- 15.
A. Hussain, C.W. Ahn, A. Ullah, J.S. Lee, I.W. Kim, Ferroelectrics 404(1), 157–161 (2010)
- 16.
N.T. Tho, A. Inoue, M. Noda, M. Okuyama, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2603–2607 (2007)
- 17.
N.D.T. Luan, L. Vuong, B. Chanh, Int J. Mater. Chem. 3(3), 51–58 (2013)
- 18.
L.D. Vuong, P.D. Gio, J. Mod. Phys. 5(14), 1258–1263 (2014)
- 19.
A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10(6), 1367–1371 (2010)
- 20.
J.-S. Lee, K.-N. Pham, H.-S. Han, H.-B. Lee, V.D.N. Tran, J. Korean Phys. Soc. 60(2), 212–215 (2012)
- 21.
L.K. Pradhan, R. Pandey, S. Kumar, S. Kumari, M. Kar, J. Mater. Sci. Mater. Electron. 30(10), 9547–9557 (2019)
- 22.
Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7(1), 25–34 (2001)
- 23.
S.K. Ghosh, V. Chauhan, A. Hussain, S.K. Rout, Ferroelectrics 517(1), 97–103 (2017)
- 24.
A. Montenegro, M. Ponce, M.S. Castro, J.E. Rodríguez-Paez, J. Eur. Ceram. Soc. 27(13), 4143–4146 (2007)
- 25.
R.D. Shannon, J.D. Bierlein, J.L. Gillson, G.A. Jones, A.W. Sleight, J. Phys. Chem. Solids 41(2), 117–122 (1980)
- 26.
L.D. Vuong, P.D. Gio, J. Alloys Compd. 817, 152790 (2020)
- 27.
Y.-D. Hou, L.-M. Chang, M.-K. Zhu, X.-M. Song, H. Yan, J. Appl. Phys. 102(8), 084507 (2007)
- 28.
L.D. Vuong, P.D. Gio, Int. J. Mater. Sci. Appl. 2(3), 89–93 (2013)
- 29.
C. Xu, D. Lin, K. Kwok, Solid State Sci. 10(7), 934–940 (2008)
- 30.
H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.-K. Ahn, J.-S. Lee, J. Appl. Phys. 113(15), 154102 (2013)
- 31.
Y. Yan, Q. Wu, Y. Yang, L. Zhang, H. Lin, G. Xue, X. Liu, Y. Chen, J. Yang, G. Liu, Ferroelectrics 520(1), 171–176 (2017)
- 32.
L.D. Vuong, N. Truong-Tho, J. Electron. Mater. 46(11), 6395–6402 (2017)
- 33.
Y. Sung, J. Kim, J. Cho, T. Song, M. Kim, H. Chong, T. Park, D. Do, S. Kim, Appl. Phys. Lett. 96(2), 022901 (2010)
- 34.
P. Butnoi, S. Manotham, P. Jaita, K. Pengpat, S. Eitssayeam, T. Tunkasiri, G. Rujijanagul, Ferroelectrics 511(1), 42–51 (2017)
- 35.
X. Lu, J. Xu, L. Yang, C. Zhou, Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, J. Mater. 2(1), 87–93 (2016)
- 36.
J.U. Rahman, A. Hussain, A. Maqbool, R.A. Malik, M.S. Kim, M.H. Kim, J. Korean Phys. Soc. 66(7), 1072–1076 (2015)
- 37.
N. Dong, X. Gao, F. Xia, H. Liu, H. Hao, S. Zhang, Crystals 9(4), 206 (2019)
- 38.
X. Liu, J. Shi, F. Zhu, H. Du, T. Li, X. Liu, H. Lu, J. Mater. 4(3), 202–207 (2018)
- 39.
S. Manotham, P. Butnoi, P. Jaita, N. Kumar, K. Chokethawai, G. Rujijanagul, D.P. Cann, J. Alloys Compd. 739, 457–467 (2018)
- 40.
P. Jaita, R. Sanjoom, N. Lertcumfu, G. Rujijanagul, RSC Adv. 9(21), 11922–11931 (2019)
- 41.
D.K. Kushvaha, S.K. Rout, B. Tiwari, J. Alloys Compd. 782, 270–276 (2019)
- 42.
P. Jaita, S. Manotham, N. Lertcumfu, Key Eng. Mater. 777, 55–59 (2018)
Acknowledgements
This research was funded by Ministry of Education and Training under grant number B2019-DHH-13.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Truong-Tho, N., Vuong, L.D. Sintering behavior and enhanced energy storage performance of SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. J Electroceram (2020). https://doi.org/10.1007/s10832-020-00224-5
Received:
Accepted:
Published:
Keywords
- Lead-free ceramics
- BNKT
- Energy storage density
- Ferroelectric properties