Sintering behavior and enhanced energy storage performance of SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics

Abstract

In the present study, SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 (BNKT) ceramics were fabricated by the conventional solid-state reaction. In order to adjust its sintering behavior and energy storage properties of BNKT ceramics, SnO2 doping contents varied at 0.0 ÷ 0.04 M. A suitable amount of SnO2 improved the dielectric properties, affected the relaxor behavior, reduced the energy loss, and also optimized the energy storage performance of BNKT ceramics. Especially, the optimized synthesis procedure for SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics resulted in enhanced the energy storage density of 300% and the energy storage efficiency of 59.1%, respectively. The results suggest that lead-free SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 ceramics should be good candidates for energy storage applications in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    L. Dai Vuong, A.Q. Dao, J. Electroceram. 44((1–2), 68–77 (2020)

    Google Scholar 

  2. 2.

    W. Pan, M. Cao, J. Qi, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Alloys Compd. 784, 1303–1310 (2019)

    Article  CAS  Google Scholar 

  3. 3.

    P.D. Gio, J. Alloys Compd. 817, 152790 (2020)

    Article  CAS  Google Scholar 

  4. 4.

    P.D. Gio, H.Q. Viet, L.D. Vuong, Int. J. Mater. Res. 109(11), 1071–1076 (2018)

    CAS  Google Scholar 

  5. 5.

    N. Truong-Tho, N.T. Nghi-Nhan, J. Electron. Mater. 46(6), 3585–3591 (2017)

    Article  CAS  Google Scholar 

  6. 6.

    L. Zhang, Z. Wang, Y. Li, P. Chen, J. Cai, Y. Yan, Y. Zhou, D. Wang, G. Liu, J. Eur. Ceram. Soc. 39(10), 3057–3063 (2019)

    Article  CAS  Google Scholar 

  7. 7.

    N. Truong-Tho, J. Electron. Mater. 46(11), 6395–6402 (2017)

    Article  CAS  Google Scholar 

  8. 8.

    N. Truong-Tho, L.D. Vuong, J. Adv. Dielectr. (2020)

  9. 9.

    O. Mokhtari, H. Nishikawa, J. Mater. Sci. Mater. Electron. 27(5), 4232–4244 (2016)

    Article  CAS  Google Scholar 

  10. 10.

    T.T. Nguyen, A. Inoue, M. Noda, M. Okuyama, Low Temperature Preparation of Bismuth-Related Ferroelectrics by Hydrothermal Synthesis, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2603–2607 (2007)

  11. 11.

    N.T. Tho, T. Kanashima, M. Sohgawa, D. Ricinschi, M. Noda, M. Okuyama, Jpn. J. Appl. Phys. 49(9S), 09MB05 (2010)

    Google Scholar 

  12. 12.

    L.D. Vuong, N.T. Tho, Int. J. Mater. Res. 108(3), 222–227 (2017)

    Article  CAS  Google Scholar 

  13. 13.

    P.D. Gio, H.T.T. Hoa, J. Mater. Sci. Chem. Eng. 2(11), 20 (2014)

    CAS  Google Scholar 

  14. 14.

    L.D. Vuong, P.D. Gio, N.T. Tho, T.V. Chuong, Indian J. Eng. Mater. S. 20, 555–560 (2013)

    CAS  Google Scholar 

  15. 15.

    A. Hussain, C.W. Ahn, A. Ullah, J.S. Lee, I.W. Kim, Ferroelectrics 404(1), 157–161 (2010)

    Article  CAS  Google Scholar 

  16. 16.

    N.T. Tho, A. Inoue, M. Noda, M. Okuyama, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2603–2607 (2007)

    Article  Google Scholar 

  17. 17.

    N.D.T. Luan, L. Vuong, B. Chanh, Int J. Mater. Chem. 3(3), 51–58 (2013)

    Google Scholar 

  18. 18.

    L.D. Vuong, P.D. Gio, J. Mod. Phys. 5(14), 1258–1263 (2014)

    Article  CAS  Google Scholar 

  19. 19.

    A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10(6), 1367–1371 (2010)

    Article  Google Scholar 

  20. 20.

    J.-S. Lee, K.-N. Pham, H.-S. Han, H.-B. Lee, V.D.N. Tran, J. Korean Phys. Soc. 60(2), 212–215 (2012)

    Article  CAS  Google Scholar 

  21. 21.

    L.K. Pradhan, R. Pandey, S. Kumar, S. Kumari, M. Kar, J. Mater. Sci. Mater. Electron. 30(10), 9547–9557 (2019)

    Article  CAS  Google Scholar 

  22. 22.

    Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7(1), 25–34 (2001)

    Article  CAS  Google Scholar 

  23. 23.

    S.K. Ghosh, V. Chauhan, A. Hussain, S.K. Rout, Ferroelectrics 517(1), 97–103 (2017)

    Article  CAS  Google Scholar 

  24. 24.

    A. Montenegro, M. Ponce, M.S. Castro, J.E. Rodríguez-Paez, J. Eur. Ceram. Soc. 27(13), 4143–4146 (2007)

    Article  CAS  Google Scholar 

  25. 25.

    R.D. Shannon, J.D. Bierlein, J.L. Gillson, G.A. Jones, A.W. Sleight, J. Phys. Chem. Solids 41(2), 117–122 (1980)

    Article  CAS  Google Scholar 

  26. 26.

    L.D. Vuong, P.D. Gio, J. Alloys Compd. 817, 152790 (2020)

    Article  CAS  Google Scholar 

  27. 27.

    Y.-D. Hou, L.-M. Chang, M.-K. Zhu, X.-M. Song, H. Yan, J. Appl. Phys. 102(8), 084507 (2007)

    Article  CAS  Google Scholar 

  28. 28.

    L.D. Vuong, P.D. Gio, Int. J. Mater. Sci. Appl. 2(3), 89–93 (2013)

    Google Scholar 

  29. 29.

    C. Xu, D. Lin, K. Kwok, Solid State Sci. 10(7), 934–940 (2008)

    Article  CAS  Google Scholar 

  30. 30.

    H.-S. Han, W. Jo, J.-K. Kang, C.-W. Ahn, I. Won Kim, K.-K. Ahn, J.-S. Lee, J. Appl. Phys. 113(15), 154102 (2013)

    Article  CAS  Google Scholar 

  31. 31.

    Y. Yan, Q. Wu, Y. Yang, L. Zhang, H. Lin, G. Xue, X. Liu, Y. Chen, J. Yang, G. Liu, Ferroelectrics 520(1), 171–176 (2017)

    Article  CAS  Google Scholar 

  32. 32.

    L.D. Vuong, N. Truong-Tho, J. Electron. Mater. 46(11), 6395–6402 (2017)

    Article  CAS  Google Scholar 

  33. 33.

    Y. Sung, J. Kim, J. Cho, T. Song, M. Kim, H. Chong, T. Park, D. Do, S. Kim, Appl. Phys. Lett. 96(2), 022901 (2010)

    Article  CAS  Google Scholar 

  34. 34.

    P. Butnoi, S. Manotham, P. Jaita, K. Pengpat, S. Eitssayeam, T. Tunkasiri, G. Rujijanagul, Ferroelectrics 511(1), 42–51 (2017)

    Article  CAS  Google Scholar 

  35. 35.

    X. Lu, J. Xu, L. Yang, C. Zhou, Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, J. Mater. 2(1), 87–93 (2016)

    Google Scholar 

  36. 36.

    J.U. Rahman, A. Hussain, A. Maqbool, R.A. Malik, M.S. Kim, M.H. Kim, J. Korean Phys. Soc. 66(7), 1072–1076 (2015)

    Article  CAS  Google Scholar 

  37. 37.

    N. Dong, X. Gao, F. Xia, H. Liu, H. Hao, S. Zhang, Crystals 9(4), 206 (2019)

    Article  CAS  Google Scholar 

  38. 38.

    X. Liu, J. Shi, F. Zhu, H. Du, T. Li, X. Liu, H. Lu, J. Mater. 4(3), 202–207 (2018)

    Google Scholar 

  39. 39.

    S. Manotham, P. Butnoi, P. Jaita, N. Kumar, K. Chokethawai, G. Rujijanagul, D.P. Cann, J. Alloys Compd. 739, 457–467 (2018)

    Article  CAS  Google Scholar 

  40. 40.

    P. Jaita, R. Sanjoom, N. Lertcumfu, G. Rujijanagul, RSC Adv. 9(21), 11922–11931 (2019)

    Article  CAS  Google Scholar 

  41. 41.

    D.K. Kushvaha, S.K. Rout, B. Tiwari, J. Alloys Compd. 782, 270–276 (2019)

    Article  CAS  Google Scholar 

  42. 42.

    P. Jaita, S. Manotham, N. Lertcumfu, Key Eng. Mater. 777, 55–59 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Ministry of Education and Training under grant number B2019-DHH-13.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Le Dai Vuong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Truong-Tho, N., Vuong, L.D. Sintering behavior and enhanced energy storage performance of SnO2-modified Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. J Electroceram (2020). https://doi.org/10.1007/s10832-020-00224-5

Download citation

Keywords

  • Lead-free ceramics
  • BNKT
  • Energy storage density
  • Ferroelectric properties