Morphological and electrical properties of La0.8Ca0.1Pb0.1FeO3 perovskite nanopowder for NH3 and CO gas detection

Abstract

Nanocrystalline gas sensitive material based on Perovskite type La0.8Ca0.1Pb0.1FeO3 (LCPFO) sample has been prepared by the sol-gel method with the citric acid route. The gas sensitivities under different temperatures of the (LCPFO) compound have been investigated toward the two NH3 and CO reducing gases. The synthesized compound has been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). It was found that the compound exhibits an orthorhombic symmetry with the Pnma space group. The effect of the experiment environment (under vacuum and air) on the conductance and activation energy Ea of the LCPFO compound has been evaluated. The Ea values have been found to be in the range of 0.43 eV < Ea < 0.53 eV and to be located between 0.42 and 0.62 eV under vacuum and air, respectively. Furthermore, the lowest detectable concentrations (10 and 40 ppm) of NH3 and CO, respectively, have been achieved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    L. Chen, X. Guo, J. Gao, Colossal elastoresistance, electroresistance and magnetoresistance in Pr0.5Sr0.5MnO3 thin films. J. Magn. Magn. Mater. 405, 249–252 (2016)

    CAS  Article  Google Scholar 

  2. 2.

    H.O. Wang, Z. Chu, K.P. Su, W.S. Tan, D.X. Hou, Colossal magnetoresistance of Pr0.7Sr0.3MnO3 layer grown on charge-ordered La0.5Ca0.5MnO3 manganite layer. J. Alloys Compd. 689, 69 (2016)

    CAS  Article  Google Scholar 

  3. 3.

    M.H. Phan, H.X. Peng, S.-C. Yu, N.D. Tho, H.N. Nhat, N. Chau, Manganese perovskites for room temperature magnetic refrigeration applications. J. Magn. Magn. Mater. 316(2), e562 (2007)

    CAS  Article  Google Scholar 

  4. 4.

    L. Ding, L. Wang, D. Ding, S. Zhang, X. Ding, G. Yuan, Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3-δ perovskite cathode for intermediate-temperature solid oxide fuel cells. J. Power Sources 354, 26 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    V.R. Mastelaro, S.C. Zilio, L.F. da Silva, P.I. Pelissari, M.I.B. Bernardi, J. Guerin, K. Aguir, Ozone gas sensor based on nanocrystalline SrTi1−xFexO3thin films. Sensors Actuators B Chem. 181, 919–924 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.G. Patil, Effect of firing temperature on gas sensing properties of nanocrystalline perovskite BaTiO3 thin films prepared by spray pyrolysis techniques. Sensors Actuators B Chem. 195, 643–650 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    X. Liu, H. Ji, Y. Gu, M. Xu, Preparation and acetone sensitive characteristics of nano-LaFeO3 semiconductor thin films by polymerization complex method. Mater. Sci. Eng. B 133(1-3), 98–101 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    X. Wang, H. Qin, L. Sun, J. Hu, CO2 sensing properties and mechanism of nanocrystalline LaFeO3 sensor. Sensors Actuators B 188, 965–971 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    E. Cao, H. Wang, X. Wang, Y. Yang, W. Hao, L. Sun, Y. Zhang, Enhanced ethanol sensing performance for chlorine doped nanocrystalline LaFeO3-δ powders by citric sol-gel method. Sensors Actuators B Chem. 251, 885–893 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    C. Doroftei, P.D. Popa, F. Iacomi, Synthesis of nanocrystalline La–Pb–Fe–O perovskite and methanol-sensing characteristics. Sensors Actuators B Chem. 161(1), 977–981 (2012)

    CAS  Article  Google Scholar 

  11. 11.

    W. Xiaofeng, M. Wei, S. Kaiming, H. Jifan, Q. Hongwei, Nanocrystalline Gd1–xCaxFeO3 sensors for detection of methanol gas. J Rare Earths 35(7), 690–696 (2017)

    Article  Google Scholar 

  12. 12.

    G.N. Chaudhari, S.V. Jagtap, N.N. Gedam, M.J. Pawar, V.S. Sangawar, Sol–gel synthesized semiconducting LaCo0.8Fe0.2O3-based powder for thick film NH3 gas sensor. Talanta 78, 1136 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    T. Addabbo, F. Bertocci, A. Fort, M. Gregorkiewitz, M. Mugnaini, R. Spinicci, V. Vignoli, Gas sensing properties and modeling of YCoO3 based perovskite materials. Sensors Actuators B Chem. 221, 1137–1155 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    L. Sun, H. Qin, F. Gao, E. Cao, K. Fan, J. Hu, Adsorption of CO, NH3and O2 on Fe-site of La0.875Sr0.125FeO3 (0 1 0) surface by density function theory calculation. Appl. Surf. Sci. 257(7), 2633–2636 (2011)

    CAS  Article  Google Scholar 

  15. 15.

    C.E. Simion, A. Sackmann, V.S. Teodorescu, C.F. Rusti, A. Stanoiu, Room temperature ammonia sensing with barium strontium titanate under humid air background. Sensors Actuators B Chem. 220, 1241–1246 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    U.B. Tumberphale, S.S. Jadhav, S.D. Raut, P.V. Shinde, S. Sangle, S.F. Shaikh, A.M. Al-Enizi, M. Ubaidullah, R.S. Mane, S.K. Gore, Tailoring ammonia gas sensing performance of La3+-doped copper cadmium ferrite nanostructures. Solid State Sci. 100, 106089 (2019)

    Article  Google Scholar 

  17. 17.

    A. Benali, S. Azizi, M. Bejar, E. Dhahri, M.F.P. Graça, Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceram. Int. 40(9), 14367–14373 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    H. Saoudi, A. Benali, M. Bejar, E. Dhahri, T. Fiorido, K. Aguir, R. Hayn, Structural and NH3 gas-sensing properties of La0.8Ca0.1Pb0.1Fe1-xCoxO3 (0.00 ≤x≤0.20) perovskite compounds. J. Alloys Compd. 731(218), 655 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    M. Dhahri, A. Zaidi, K. Cherif, J. Dhahri, E.K. Hlil, Effect of indium substitution on structural, magnetic and magnetocaloric properties of La0.5Sm0.1Sr0.4Mn1-xInxO3 (0 ≤x ≤ 0.1) manganites. J. Alloys Compd. 691, 578 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    H. Baaziz, N.K. Maaloul, A. Tozri, H. Rahmouni, S. Mizouri, K. Khirouni, E. Dhahri, Effect of sintering temperature and grain size on the electrical transport properties of La0.67Sr0.33MnO3 manganite. Chem. Phys. Lett. 640, 77 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    K.H. Moon, Y. Kim, C.S. Park, Williamson- Hall analysis and the dielectric behavior of complex perovskites (BaM0.9M0.1)0.984O3 (M=Ti, Zr; M=Nb, Ta). Ceram. Int. 42, 1432 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    S.G. Pandya, J.P. Corbett, W.M. Jadwisienczak, M.E. Kordesch, Structural characterization and X-ray analysis by Williamson–Hall method for erbium doped aluminum nitride nanoparticles, synthesized using inert gas condensation technique. Phys. E. 79, 98–102 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    R. Zhang, J. Hu, M. Zhao, Z. Han, J. Wei, Z. Wu, H. Qin, K. Wang, Electrical and CO-sensing properties of SmFe0.7Co0.3O3 perovskite oxide. Mater. Sci. Eng. B 171, 139 (2010)

    Article  Google Scholar 

  24. 24.

    J.C. Ding, H.Y. Li, T.C. Cao, Z.X. Cai, X.X. Wang, X. Guo, Characteristics and sensing properties of CO gas sensors based on LaCo1−xFexO3 nanoparticles. Solid State Ionics 303, 97–102 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    J. Guerin, M. Bendahan, K. Aguir, A dynamic response model for the WO3-based ozone sensors. Sensors Actuators B Chem. 128(2), 462–467 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    A.A. Haidry, J. Puskelova, T. Plecenik, P. Durina, J. Gregus, M. Truchly, T. Roch, M. Zahoran, M. Vargova, P. Kus, A. Plecenik, G. Plesch, Characterization and hydrogen gas sensing properties of TiO2 thin films prepared by sol–gel method. Appl. Surf. Sci. 259, 270–275 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    X. Liu, B. Cheng, H. Qin, P. Song, S. Huang, R. Zhang, J. Hu, M. Jiang, Preparation, electrical and gas-sensing properties of perovskite-type La1_xMgxFeO3 semiconductor materials. J. Phys. Chem. Solids 68(4), 511–515 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    Y. Wang, Q. Mu, G. Wang, Z. Zhou, Sensing characterization to NH3 of nanocrystalline Sb-doped SnO2 synthesized by a non aqueous sol–gel route. Sensors Actuators B Chem. 145(2), 847–853 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sensors Actuators B Chem. 196, 413–420 (2014)

    CAS  Article  Google Scholar 

  30. 30.

    N.V. Hieu, V.V. Quang, N. DucHoa, D. Kim, Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Curr. Appl. Phys. 11(3), 657–661 (2011)

    Article  Google Scholar 

  31. 31.

    Y. Chen, H. Qin, X. Wang, L. Li, J. Hu, Acetone sensing properties and mechanism of nano-LaFeO3thick-films. Sensors Actuators B Chem. 235, 56–66 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    J. Qin, Z. Cui, X. Yang, S. Zhu, Z. Li, Y. Liang, Synthesis of three-dimensionally ordered macroporous LaFeO3 with enhanced methanol gas sensing properties. Sensors Actuators B Chem. 209, 706–713 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang, S. Wu, Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sensors Actuators B Chem. 134(1), 133–139 (2008)

    CAS  Article  Google Scholar 

  34. 34.

    K. Cao, E. Cao, Y. Zhang, W. Hao, L. Sun, H. Peng, The influence of nonstoichiometry on electrical transport and ethanol sensing characteristics for nanocrystalline LaFexO3 − δ sensors. Sensors Actuators B Chem. 230, 592 (2016)

    CAS  Article  Google Scholar 

  35. 35.

    O. Lupan, S. Shishiyanu, L. Chow, T. Shishiyanu, Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing. Thin Solid Films 516, 3338 (2008)

    CAS  Article  Google Scholar 

  36. 36.

    A. Mirzaei, S. Park, G.J. Sun, H. Kheel, C. Lee, CO gas sensing properties of In4Sn3O12 and TeO2 composite nanoparticle sensors. J. Hazard. Mater. 305, 130–138 (2016)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Bejar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saoudi, H., Benali, A., Bejar, M. et al. Morphological and electrical properties of La0.8Ca0.1Pb0.1FeO3 perovskite nanopowder for NH3 and CO gas detection. J Electroceram (2020). https://doi.org/10.1007/s10832-020-00223-6

Download citation

Keywords

  • Perovskite
  • Gas sensing
  • NH3 gas
  • CO gas