Structure and electrochemical properties of titanate perovskite with in situ exsolution as a ceramic electrode material

Abstract

In this work, the structure and electrochemical properties of titanate ceramics with in situ Ni exsolution are investigated to identify the structure-performance relationship of the exsolved perovskite for use as electrode materials in solid oxide cells. The phase formation, redox behaviour and exsolution properties of the material have been studied. The characteristics of the individual electrochemical processes are identified and correlated with the Ni doping and microstructural evolution. The results indicate that the electrode activity is strongly dependent on the density and particle size of the in situ grown Ni nanoparticles. The interfacial ion transfer and charge transfer processes can be promoted by increasing the electrode surface area or improving the adhesion between the electrode and electrolyte, while the surface electrode processes including the dissociative adsorption are more dependent on the porosity and electrode/electrolyte interfacial region of the exsolved titanate electrode.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    S.C. Singhal, Advances in solid oxide fuel cell technology. Solid State Ionics 135(1-4), 305–313 (2000)

    CAS  Article  Google Scholar 

  2. 2.

    S.A. Barnett, L. Jiang, B.D. Madsen, Z. Zhan, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4865 (2004)

    Article  CAS  Google Scholar 

  3. 3.

    N. Meng, M.K.H. Leung, D.Y.C. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrog. Energy 33, 2337–2354 (2008)

    Article  CAS  Google Scholar 

  4. 4.

    Y. Zhang, X.C. Gao, J. Sunarso, B. Liu, W. Zhou, M. Ni, Z.P. Shao, Significantly improving the durability of Single-chamber solid oxide fuel cells: A highly active CO2-resistant perovskite cathode. ACS Appl. Energy Mater. 1(3), 1337–1343 (2018)

    CAS  Article  Google Scholar 

  5. 5.

    J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T.H. Lim, G. Kim, Hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production. Nano Energy 44, 121–126 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    T. Masaru, L. Bo-Kuai, R. Shriram, Scalable nanostructured membranes for solid-oxide fuel cells. Nat. Nano. Technol. 6, 282–286 (2011)

    Article  CAS  Google Scholar 

  7. 7.

    K. Xie, Y. Zhang, G. Meng, J.T.S. Irvine, Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser. Energy Environ. Sci. 4(6), 2218–2222 (2011)

    CAS  Article  Google Scholar 

  8. 8.

    J.T.S. Irvine, D. Neagu, M.C. Verbraeken, C. Chatzichristodoulou, C. Graves, M.B. Mogensen, Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1(1), 15014 (2016)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Li, W. Zhang, Y. Zheng, J. Chen, B. Yu, Y. Chen, M. Liu, Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chem. Soc. Rev. 46(20), 6345–6378 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chem. Soc. Rev. 46(5), 1427–1463 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    B. Lei, B. Samir, T. Enrico, Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem. Soc. Rev. 46, 8255–8270 (2015)

    Google Scholar 

  12. 12.

    S. Hashimoto, F.W. Poulsen, M. Mogensen, Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature. J. Alloys Compd. 439(1-2), 232–236 (2007)

    CAS  Article  Google Scholar 

  13. 13.

    O.A. Marina, N.L. Canfield, J.W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 149(1-2), 21–28 (2002)

    CAS  Article  Google Scholar 

  14. 14.

    P. Blennow, K.K. Hansen, L.R. Wallenberg, M. Mongensen, Synthesis of Nb-doped SrTiO3 by a modified glycine-nitrate process. J. Eur. Ceram. Soc. 27(13-15), 3609–3612 (2007)

    CAS  Article  Google Scholar 

  15. 15.

    J. Maček, B. Novosel, M. Marinšek, Ni–YSZ SOFC anodes—Minimization of carbon deposition. J. Eur. Ceram. Soc. 27(2-3), 487–491 (2007)

    Article  CAS  Google Scholar 

  16. 16.

    J.C. Li, Y. Yu, M.Y. Yin, N. Zhou, Z.F. Ma, A novel high performance composite anode with in situ growth of Fe-Ni alloy nanoparticles for intermediate solid oxide fuel cells. Electrochim. Acta 235, 317–322 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    J. Myung, D. Neagu, M. Tham, J.T. Irvine, In situ tailored nickel nano-catalyst layer for internal reforming hydrocarbon fueled SOFCs. ECS Trans. 68(1), 1121–1128 (2015)

    CAS  Article  Google Scholar 

  18. 18.

    F. Kosaka, N. Noda, T. Nakamura, J. Otomo, In situ formation of Ru nanoparticles on La1-xSr(x)TiO3-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a proton-conducting solid electrolyte. J. Mater. Sci. 52(5), 2825–2835 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    X. Zhou, N. Yan, K.T. Chuang, J. Luo, Progress in La-doped SrTiO3(LST)-based anode materials for solid oxide fuel cells. RSC Adv. 4(1), 118–131 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    G. Xiao, S. Wang, Y. Lin, Y. Zhang, K. An, F. Chen, Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells. ACS Appl. Mater. Interfaces 6(22), 19990–19996 (2014)

    CAS  Article  Google Scholar 

  21. 21.

    M.C. Verbraeken, B.R. Sudireddy, V. Vasechko, M. Cassidy, T. Ramos, J. Malzbender, P. Holtappels, J.T.S. Irvine, Scaling up aqueous processing of A-site deficient strontium titanate for SOFC anode supports. J. Eur. Ceram. Soc. 38(4), 1663–1672 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    D.P. Fagg, V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, J.R. Frade, The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. J. Eur. Ceram. Soc. 21(10-11), 1831–1835 (2001)

    CAS  Article  Google Scholar 

  23. 23.

    K.Y. Lai, A. Manthiram, Self-regenerating co–Fe nanoparticles on perovskite oxides as a hydrocarbon fuel oxidation catalyst in solid oxide fuel cells. Chem. Mater. 30(8), 2515–2525 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    Lu J, Zhu C, Pan C, Lin W, Lemmon JP, Chen F, Li C, Xie K (2018) Highly efficient electrochemical reforming of CH4/CO2 in a solid oxide Electrolyser. Sci Adv 4:eaar5100

  25. 25.

    K.Y. Lai, A. Manthiram, Evolution of Exsolved nanoparticles on a perovskite oxide surface during a redox process. Chem. Mater. 30(8), 2838–2847 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    K. Hilpert, R.W. Steinbrech, F. Boroomand, E. Wessel, F. Meschke, A. Zuev, O. Teller, H. Nickel, L. Singheiser, Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 23(16), 3009–3020 (2003)

    CAS  Article  Google Scholar 

  27. 27.

    S. Sengodan, Y.W. Ju, O. Kwon, A. Jun, H.Y. Jeong, T. Ishihara, J. Shin, G. Kim, Self-decorated MnO nanoparticles on double perovskite solid oxide fuel cell anode by in situ exsolution. ACS Sustain. Chem. Eng. 5(10), 9207–9213 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    Y.F. Sun, Y.Q. Zhang, J. Chen, J.H. Li, Y.T. Zhu, Y.M. Zeng, B.S. Amirkhiz, J. Li, B. Hua, J.L. Luo, New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent. Nano Lett. 16(8), 5303–5309 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    O. Kwon, S. Sengodan, K. Kim, G. Kim, H.Y. Jeong, J. Shin, Y.W. Ju, J.W. Han, G. Kim, Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 8(1), 15967 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    Y. Gao, Z.H. Lu, L.T. You, J. Wang, L. Xie, J.Q. He, F. Ciucci, Energetics of nanoparticle exsolution from perovskite oxides. J. Phys. Chem. Lett. 9(13), 3772–3778 (2018)

    CAS  Article  Google Scholar 

  31. 31.

    Y. Gao, D.J. Chen, M. Saccoccio, Z.H. Lu, F. Ciucci, From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 27, 499–508 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5(11), 916–923 (2013)

    CAS  Article  Google Scholar 

  33. 33.

    D. Neagu, T.S. Oh, D.N. Miller, H. Menard, S.M. Bukhari, S.R. Gamble, R.J. Gorte, J.M. Vohs, J.T.S. Irvine, Nano-socketed Nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6(1), 8120 (2015)

    Article  Google Scholar 

  34. 34.

    L. Yang, K. Xie, S. Xu, T. Wu, Q. Zhou, T. Xie, Y. Wu, Redox-reversible niobium-doped strontium Titanate decorated with in situ grown Nickel Nanocatalyst for high-temperature direct steam electrolysis. Dalton Trans. 43(37), 14147–14157 (2014)

    CAS  Article  Google Scholar 

  35. 35.

    F. Zhao, V. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J. Power Sources 141, 79–95 (2015)

    Article  CAS  Google Scholar 

  36. 36.

    S.D. Ebbesen, M. Mogensen, Electrolysis of carbon dioxide in solid oxide electrolysis cells. J. Power Sources 193(1), 349–358 (2009)

    CAS  Article  Google Scholar 

  37. 37.

    Y. Zhang, Z. Yu, Y. Tao, J. Lu, Y. Liu, J. Shao, Insight into the electrochemical processes of titanate electrode with in situ Ni exsolution for solid oxide cells. ACS Appl. Energy Mater. 2(6), 4033–4044 (2019)

    CAS  Article  Google Scholar 

  38. 38.

    T. Ramos, L.C. Bernuy, B.R. Sudireddy, J.J. Bentzen, W. Zhang, P.S. Jorgensen, L.T. Kuhn, Performance-microstructure relations in Ni/CGO infiltrated Nb-doped SrTiO3 SOFC anodes. ECS Trans. 45(1), 389–402 (2012)

    CAS  Article  Google Scholar 

  39. 39.

    J. Zhang, K. Xie, H. Wei, Q.Q. Qin, W.T. Qi, L.M. Yang, R. Cong, Y.C. Wu, In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis. Sci. Report. 4, 7082 (2014)

    Article  Google Scholar 

  40. 40.

    P. Blennow, A. Hagen, K. Hansen, L. Wallenberg, M. Mogensen, Defect and electrical transport properties of Nb-doped SrTiO3. Solid State Ionics 179(35-36), 2047–2058 (2008)

    CAS  Article  Google Scholar 

  41. 41.

    D.A. Osinkin, B.L. Kuzin, Hydrogen oxidation kinetics at Ni-Zr0.9Sc0.1O1.95 anode: Influence of the difference of potential in the dense part of the double electric layer. Electrochim. Acta 282, 128–136 (2018)

    CAS  Article  Google Scholar 

  42. 42.

    A.M. Hussain, J.V.T. Høgh, W. Zhang, E. Stamte, K.T.S. Thyden, N. Bonanos, Improved ceramic anodes for SOFCs with modified electrode/electrolyte Interface. J. Power Sources 212, 247–253 (2012)

    CAS  Article  Google Scholar 

  43. 43.

    T. Ramos, S. Veltze, B.R. Sudireddy, P. Holtappels, Impedance and stability of M/CGO (M: Ni, Pd, Ru) Co-infiltrated Nb-doped SrTiO3 SOFC anodes. ECS Electrochem. Lett. 3(2), F5–F6 (2013)

    Article  CAS  Google Scholar 

  44. 44.

    T. Ramos, K. Thyden, M. Mogensen, Electrochemical characterisation of Ni/(Sc)YSZ electrodes. ECS Trans. 28, 123–139 (2010)

    CAS  Article  Google Scholar 

  45. 45.

    A.M. Hussain, J.V.T. Hogh, W. Zhang, P. Blennow, N. Bonanos, A. Boukamp, Effective improvement of Interface modified strontium Titanate based solid oxide fuel cell anodes by infiltration with Nano-sized palladium and gadolinium-doped cerium oxide. Electrochim. Acta 113, 635–643 (2013)

    CAS  Article  Google Scholar 

  46. 46.

    Z. Jiao, N. Takagi, N. Shikazono, N. Kasagi, Study on local morphological changes of nickel in solid oxide fuel cell anode using porous Ni pellet electrode. J. Power Sources 196(3), 1019–1029 (2011)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support by National Natural Science Foundation of China (51702221, 51702151, and 21850410453), Shenzhen Science Innovation Committee (JCYJ20170817110358231, JCYJ20190808111607078), China Postdoctoral Science Foundation (2018 M643193), and Research Foundation of SZU (827-000226). The authors gratefully acknowledge the support from the Instrumental Analysis Center of Shenzhen University (Xili Campus).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jing Shao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tao, Y., Yu, Z. et al. Structure and electrochemical properties of titanate perovskite with in situ exsolution as a ceramic electrode material. J Electroceram (2020). https://doi.org/10.1007/s10832-020-00222-7

Download citation

Keywords

  • Solid oxide cells
  • Ceramic electrode
  • Perovskite
  • Exsolution
  • Structure-performance relationship