Skip to main content
Log in

Tailoring the strain performance of lead-free relaxor/ferroelectric-layered composites

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

0.95(Na0.82K0.18)1/2Bi1/2TiO3–0.05FeNbO4 (NKBT-0.05FN) lead-free incipient piezoceramic is a promising candidate for actuator applications due to their large reversible electromechanical strains. However, the driving electric field required to obtain such a large strain is too high to meet the requirements of commercial applications. In this study, 0.95(Na0.82K0.18)1/2Bi1/2TiO3–0.05FeNbO4 /(Na0.82K0.18)1/2Bi1/2TiO3 (NKBT-0.05FN/NKBT) relaxor/ferroelectric (RE/FE) 2–2 type composite ceramics were designed to produce tailored strain properties. By tailoring the phase structure of the composites, a high strain of 0.36% and the corresponding large-signal piezoelectric coefficient d*33 of 720 pm/V were achieved using 90 vol.% NKBT-0.05FN/10 vol.% NKBT under a low driving electric field of 50 kV/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Zheng, J. Wu, D. Xiao, J. Zhu, Prog. Mater. Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  2. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  3. J. Hao, W. Li, J. Zhai, H. Chen, Mat. Sci. Eng. R 135, 1 (2019)

    Article  Google Scholar 

  4. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)

    Article  CAS  Google Scholar 

  5. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, J. Mater. Chem. A 5, 6569 (2017)

    Article  CAS  Google Scholar 

  6. X. Zhou, L. Wang, G. Xue, K. Zhou, H. Luo, D. Zhang, J. Adv. Dielec. 8, 1850040 (2018)

    Article  CAS  Google Scholar 

  7. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  8. W. Jo, S.-T. Zhang, A.-B. Kounga, J. Rodel, J. Electroceram. 29, 71 (2012)

    Article  CAS  Google Scholar 

  9. S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91, 112906 (2007)

    Article  Google Scholar 

  10. H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35, 2501 (2015)

    Article  CAS  Google Scholar 

  11. X.-M. Liu, X.-L. Tan, Adv. Mater. 28, 574 (2016)

    Article  CAS  Google Scholar 

  12. J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)

    Article  CAS  Google Scholar 

  13. R.F. Cheng, Z.J. Xu, R.Q. Chu, J.G. Hao, J. Du, G.R. Li, J. Eur. Ceram. Soc. 36, 489 (2016)

    Article  CAS  Google Scholar 

  14. H. Nagata, K. Tabuchi, T. Takenaka., Jpn. J. Appl. Phys. 52, 09kd05 (2013)

  15. W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, J. Appl. Phys. 105, 094102 (2009)

    Article  Google Scholar 

  16. W. Bai, D. Chen, Y. Huang, P. Zheng, J. Zhong, M. Ding, Y. Yuan, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42, 7669 (2016)

    Article  CAS  Google Scholar 

  17. E. Sapper, A. Gassmann, L. Gjødvad, W. Jo, T. Granzow, J. Rödel, J. Euro. Ceram. Soc. 34, 653 (2014)

    Article  CAS  Google Scholar 

  18. H. Nagata, Y. Hiruma, T. Takenaka, J. Ceram. Soc. Jpn. 118, 726 (2010)

    Article  CAS  Google Scholar 

  19. C. Groh, D.J. Franzbach, W. Jo, K.G. Webber, J. Kling, L.A. Schmitt, H.-J. Kleebe, S.-J. Jeong, J.-S. Lee, Adv. Funct. Mater. 24, 356 (2014)

    Article  CAS  Google Scholar 

  20. D.S. Lee, D.H. Lim, M.S. Kim, K.H. Kim, S.J. Jeong, Appl. Phys. Lett. 99, 062906 (2011)

    Article  Google Scholar 

  21. S.J. Jeong, M.S. Kim, S.M. Jang, I.S. Kim, S. Mohsin, J.S. Song, J. Alloy. Compd. 646, 1058 (2015)

    Article  CAS  Google Scholar 

  22. H. Zhang, C. Groh, Q. Zhang, W. Jo, K.G. Webbe, J. Rödel, Adv. Electron. Mater. 1, 1500018 (2015)

    Article  Google Scholar 

  23. A. Ayrikyan, O. Prach, N.H. Khansur, S. Keller, S. Yasui, M. Itoh, O. Sakata, K. Durst, K.G. Webber, Acta Mater. 148, 432 (2018)

    Article  CAS  Google Scholar 

  24. T.R. Shrout, W.A. Schulze, J.V. Biggers, Ferroelectrics 29, 129 (1980)

    Article  CAS  Google Scholar 

  25. V.O. Sherman, A.K. Tagantsev, N. Setter, Appl. Phy. Lett. 90, 162901 (2007)

    Article  Google Scholar 

  26. J. Zhang, Z. Pan, F.F. Guo, W.C. Liu, H.P. Ning, Y.B. Chen, M.H. Lu, B. Yang, J. Chen, S.T. Zhang, X.R. Xing, J. Rodel, W.W. Cao, Y.F. Chen, Nat. Commun. 6, 6615 (2015)

    Article  CAS  Google Scholar 

  27. D.S. Lee, D.H. Lim, M.S. Kim, K.H. Kim, S.J. Jeong, Appl. Phys. Lett. 99, 062906 (2011)

    Article  Google Scholar 

  28. N.H. Khansur, C. Groh, W. Jo, C. Reinhard, J.A. Kimpto, K.G. Webber, et al., J. Appl. Phys. 115, 124108 (2014)

    Article  Google Scholar 

  29. P.Y. Fan, Y.Y. Zhang, B. Xie, Y.W. Zhu, W.G. Ma, C. Wang, B. Yang, J. Xu, J.Z. Xiao, H.B. Zhang, Ceram. Int. 44, 3211 (2018)

    Article  CAS  Google Scholar 

  30. Y.W. Zhu, Y.Y. Zhang, B. Xie, P.Y. Fan, M.A. Marwat, W.G. Ma, C. Wang, B. Yang, J.Z. Xiao, H.B. Zhang, Ceram. Int. 44, 7851 (2018)

    Article  CAS  Google Scholar 

  31. A. Ayrikyan, O. Prach, N.H. Khansur, S. Kellera, S. Yasui, M. Itoh, O. Sakata, K. Durst, K.G. Webber, Acta Mater. 148, 432 (2018)

    Article  CAS  Google Scholar 

  32. T.H. Dinh, V.D.N. Tran, T.T. Nguyen, Q.T.N. Hoang, H.-S. Han, J.-S. Lee, Ceram. Int. 43, 17160 (2017)

    Article  CAS  Google Scholar 

  33. P.Y. Fan, Y.Y. Zhang, Y.W. Zhu, W.G. Ma, K. Liu, X.T. He, M.A. Marwat, B. Xie, M. Li, H.B. Zhang, J. Am. Ceram. Soc. 102, 4113 (2019)

    Article  CAS  Google Scholar 

  34. M. Acosta, W. Jo, J. Rödel, D.C. Lupascu, J. Am. Ceram. Soc. 97, 1937 (2014)

  35. S. Wang, A. Ayrikyan, H. Zhang, K.G. Webber, B.-X. Xu, Adv. Electron. Mater. 5, 1800710 (2015)

    Article  Google Scholar 

  36. D. Gobeljic, V.V. Shvartsman, A. Belianinov, B. Okatan, S. Jesse, S.V. Kalinin, C. Groh, J. Rödel, D.C. Lupascu, Nanoscale 8, 2168 (2016)

    Article  CAS  Google Scholar 

  37. W. Jo, J. Rödel, Appl. Phys. Lett. 99, 042901 (2011)

    Article  Google Scholar 

  38. S.O. Leontsev, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)

    Article  Google Scholar 

  39. C. Ma, X.-L. Tan, Solid State Commun. 150, 1497 (2010)

    Article  CAS  Google Scholar 

  40. D. Zhang, T.W. Button, V.O. Sherman, A.K. Tagantsev, T. Price, D. Iddles, J. Euro. Ceram. Soc. 30, 407 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant no. 51672092, U1732117 and 5190021044), and the supported by the Project of Henan Province Science and Technology under grant no.172102210380, and China Postdoctoral Science Foundation funded project under grant no. 2018 M632847, and Wuhan Morning Light Plan of Youth Science and Technology (No. 2017050304010299). Specially, the authors appreciate the valuable suggestions and the comments by the reviewers and the editors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengyuan Fan or Haibo Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fan, P., Fan, H. et al. Tailoring the strain performance of lead-free relaxor/ferroelectric-layered composites. J Electroceram 44, 32–40 (2020). https://doi.org/10.1007/s10832-020-00201-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00201-y

Keywords

Navigation