Skip to main content
Log in

Structure and microwave dielectric properties of double vanadate Ca9A(VO4)7 (A= La, Pr, Nd and Sm) ceramics for LTCC applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Ca9A(VO4)7 (A = La, Pr, Nd and Sm) ceramics have been prepared by conventional solid state ceramic route. The phase purity of the samples was confirmed by powder X-ray diffraction technique. Raman spectroscopic studies confirm the existence of (VO4)3− vibrational groups in Ca9A(VO4)7 ceramics. Ca9A(VO4)7 (A = La, Pr, Nd and Sm) ceramics exhibit microwave dielectric properties of εr = 9.8 to 10.4, Qxf = 4500 to 14,900 GHz and low temperature coefficient of resonant frequency τf = −3.8 to −10.2 ppm/°C. Ca9A(VO4)7 ceramics with A = La, Nd and Sm show good chemical compatibility with Ag electrode and can be used as candidate materials for LTCC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53(2), 57–90 (2008)

    CAS  Google Scholar 

  2. K. Wakino, Ceram. Trans. 100, 499–506 (1999)

    CAS  Google Scholar 

  3. M. Valant, D. Suvorov, J. Am, Ceram. Soc. 83(11), 2721–2729 (2000)

    CAS  Google Scholar 

  4. M.T. Sebastian, K.P. Surendran, J. Eur, Ceram. Soc. 26(10), 1791–1799 (2006)

    CAS  Google Scholar 

  5. J. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, R.E. Newnham, J. Am, Ceram. Soc. 77(9), 2485–2488 (1994)

    CAS  Google Scholar 

  6. C.L. Huang, K.H. Chiang, S.C. Chuang, Mat. Res. Bull. 39(4–5), 629–636 (2004)

    CAS  Google Scholar 

  7. K.P. Surendran, P. Mohanan, M.T. Sebastian, J. Solid State Chem. 177(11), 4031–4036 (2004)

    CAS  Google Scholar 

  8. M. Udovic, M. Valant, D. Suvorov, J. Am, Ceram. Soc. 87(4), 591–597 (2004)

    CAS  Google Scholar 

  9. D.K. Kwon, M.T. Lanagan, T.R. Shrout, J. Am, Ceram. Soc. 88(12), 3419–3422 (2005)

    CAS  Google Scholar 

  10. G. Subodh, M.T. Sebastian, J. Am, Ceram. Soc. 90(7), 2266–2268 (2007)

    CAS  Google Scholar 

  11. S.S. Faouri, A. Mostaed, J.S. Dean, D. Wang, D.C. Sinclair, S. Zhang, W.G. Whittow, Y. Vardaxoglou, I.M. Reaney, Acta Mater. 166, 202–207 (2019)

    CAS  Google Scholar 

  12. N.K. James, R. Ratheesh, J. Am, Ceram. Soc. 93(4), 931–933 (2010)

    CAS  Google Scholar 

  13. D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X.G. Wu, L. Shui, X. Yao, J. Am, Ceram. Soc. 94(2), 348–350 (2011)

    CAS  Google Scholar 

  14. D. Zhou, D. Guo, W.B. Li, L.X. Pang, X. Yao, D.W. Wang, I.M. Reaney, J. Mater, Chem. C. 4(23), 5357–5362 (2016)

    CAS  Google Scholar 

  15. D. Wang, S. Zhang, D. Zhou, K. Song, A. Feteira, Y. Vardaxoglou, W.G. Whittow, D. Cadman, I.M. Reaney, Materials (Basel) 12(9), 1370–1380 (2019)

    CAS  Google Scholar 

  16. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, J. Mater, Chem. C 6(35), 9290–9313 (2018)

    CAS  Google Scholar 

  17. D.W. Wang, D. Zhou, S. Zhang, Y. Vardaxoglou, W.G. Whittow, D. Cadman, I.M. Reaney, ACS Sustainable Chem. Eng. 6(2), 2438–2444 (2018)

    CAS  Google Scholar 

  18. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, J. Eur, Ceram. Soc. 39(7), 2374–2378 (2019)

    CAS  Google Scholar 

  19. D. Zhou, H. Wang, X. Yao, L.X. Pang, J. Am, Ceram. Soc. 91(10), 3419–3422 (2008)

    CAS  Google Scholar 

  20. E.K. Suresh, A.N. Unnimaya, R Ratheesh. Ceram. Int. 39(4), 3635–3639 (2013)

    CAS  Google Scholar 

  21. E.K. Suresh, A.N. Unnimaya, R. Ratheesh, J. Am, Ceram. Soc. 97(5), 1530–1533 (2014)

    Google Scholar 

  22. A.N. Unnimaya, E.K. Suresh, R. Ratheesh, Eur. J. Inorg. Chem. 2015(2), 305–310 (2015)

    Google Scholar 

  23. M.T. Sebastian, H. Wang, H. Jantunen, Curr. Opin. Solid State Mater. Sci. 20(3), 151–170 (2016)

    CAS  Google Scholar 

  24. A.A. Belik, V.A. Morozov, R.N. Kotov, S.S. Khasanov, B.I. Lazoryak, Crystallogr. Rep. 42(5), 751–757 (1997)

    Google Scholar 

  25. A. A. Belik, V. A. Morozov, N. Kotov, S. S. Khasanov, B. I. Lazoryak, Crystallogr. Rep. 45(3), 389–394 (2000) [Translated from Kristallografiya, 45(3), 432–437 (2000)]

  26. A. A. Belik, V. A. Morozov, S. V. Grechkin, S. S. Khasanov, B. I. Lazoryak, Crystallogr. Rep 45(5), 728–733 (2000) [Translated from Kristallografiya, 45(5),798–803 (2000)]

  27. J.S.O. Evans, J. Huang, A.W. Sleight, J. Solid State Chem. 157(2), 255–260 (2001)

    CAS  Google Scholar 

  28. R. Singh, S.J. Dhoble, J. Lumin, Luminescence 28(4), 607–613 (2013)

    CAS  Google Scholar 

  29. S. Cao, Y. Ma, C. Quan, W. Zhu, K. Yang, W. Yin, G. Zheng, M. Wu, Z. Sun, J. Alloy, Compds. 487(1–2), 346–350 (2009)

    CAS  Google Scholar 

  30. X. Wu, Y. Huang, L. Shi, H.J. Seo, J. Mate, Chem. Phys. 116(2–3), 449–452 (2009)

    CAS  Google Scholar 

  31. B.W. Hakki, P.D. Coleman, IRE Trans. Microw. Theory. Tech. 8(4), 402–410 (1960)

    Google Scholar 

  32. J. Mazierska, M.V. Jacob, A. Harring, J. Krupka, P. Barnwell, T. Sims, J. Eur, Ceram. Soc. 23(14), 2611–2615 (2003)

    CAS  Google Scholar 

  33. S. Thomas, M.T. Sebastian, J. Am, Ceram. Soc. 92(12), 2975–2981 (2009)

    CAS  Google Scholar 

  34. S.C. Shirbhate, A.K. Yadav, S.A. Acharya, Appl. Phys. Lett. 108(14), 143501–143505 (2016)

    Google Scholar 

  35. S.D. Ramarao, V.R.K. Murthy, Scr. Mater. 69(3), 274–277 (2013)

    CAS  Google Scholar 

  36. S.D. Ramarao, S.R. Kiran, V.R.K. Murthy, Mat. Res. Bull. 56, 71–79 (2014)

    CAS  Google Scholar 

  37. A. Grzechnik, Chem. Mater. 10(4), 1034–1040 (1998)

    CAS  Google Scholar 

  38. M.P. Demesh, A.S. Yasukevich, N.V. Kuleshov, M.B. Kosmyna, P.V. Mateychenko, B.P. Nazarenko, A.N. Shekhovtsov, A.A. Kornienko, E.B. Dunina, V.A. Orlovich, I.A. Khodasevich, W. Paszkowicz, A. Behrooz, Opt. Mater. 60(1), 387–393 (2016)

    CAS  Google Scholar 

  39. R.D. Shannon, J. Appl, Phys. 73, 348–366 (1993)

    CAS  Google Scholar 

  40. S.D. Ramarao, S.R. Kiran, V.R.K. Murthy, J. Am, Ceram. Soc 95(11), 1–6 (2012)

    Google Scholar 

  41. S.K. Singh, S.R. Kiran, V.R.K. Murthy, Mater. Chem. Phys. 141(2–3), 822–827 (2013)

    CAS  Google Scholar 

  42. S.K. Singh, V.R.K. Murthy, Mater. Chem. Phys. 160, 187–193 (2015)

    CAS  Google Scholar 

  43. K.P. Surendran, S. Soloman, M.R. Varma, P. Mohanan, M.T. Sebastian, J. Mater, Res 17(10), 2561–2566 (2002)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. N. Raghu, Director, C-MET, Thrissur for extending the facilities to carry out the work. The authors are also thankful to the Board of Research in Nuclear Sciences, Mumbai for financial support under grant number 34/15/01/2014-BRNS/0906. One of the authors, E.K.Suresh is grateful to the Council of Scientific and Industrial Research (CSIR), India for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ratheesh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveenraj, R., Unnimaya, A.N., Suresh, E.K. et al. Structure and microwave dielectric properties of double vanadate Ca9A(VO4)7 (A= La, Pr, Nd and Sm) ceramics for LTCC applications. J Electroceram 44, 59–67 (2020). https://doi.org/10.1007/s10832-019-00192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-019-00192-5

Keywords

Navigation