Advertisement

Set transition statistics of different switching regimes of TaOx memristor

  • Xiaojuan LianEmail author
  • Feng Miao
  • Xiang Wan
  • Yu-Feng Guo
  • Yi TongEmail author
Article
  • 109 Downloads

Abstract

In this work, the statistics of Set transition parameters of two different resistance switching (RS) regimes of TaOx-based memristor have been analyzed. By screening the statistical data into six different resistance ranges, the distributions of Set voltage and Set current are shown to be compatible with a Weibull model. The scale factors of Set voltages increase with the OFF-State resistances whereas the scale factors of Set currents decrease with the OFF-State resistances, matching the experimental results. The Weibull slopes of Set voltages and Set currents are demonstrated to be independent of the OFF-State resistances. This is an indication that the Set point corresponds to the initial phase of the formation of conductive filaments. Besides, it has been revealed that the high endurance RS regime owes higher Weibull slopes. This work is greatly significant on the improvement of the uniformity and the endurance of memristor devices.

Keywords

TaOx memristor Resistance switching Set statistics Weibull distribution 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61804079, No. 61704084), the Science Research Funds for Nanjing University of Posts and Telecommunications (NY218110, NY217116).

References

  1. 1.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  2. 2.
    T. Prodromakis, C. Toumazou, L. Chua, Nat. Mater. 11(6), 478–481 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21(25-26), 2632–2663 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, I. Valov, Nat. Nanotechnol. 11, 67–74 (2015)CrossRefGoogle Scholar
  5. 5.
    Z. Wang, H. Jiang, J.M. Hyung, P. Lin, A. Ribbe, Q. Xia, J.J. Yang, Nanoscale 8(29), 14023–14030 (2016)CrossRefGoogle Scholar
  6. 6.
    T. Chang, S.-H. Jo, W. Lu, ACS Nano 5(9), 7669–7676 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Prezioso, F.M. Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov, Nature 521(7550), 61–64 (2015)CrossRefGoogle Scholar
  8. 8.
    J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G.M. Ribeiro, R.S. Williams, Appl. Phys. Lett. 97(23), 232102 (2010)CrossRefGoogle Scholar
  9. 9.
    F. Miao, J.P. Strachan, J.J. Yang, M.X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 23(47), 5633–5640 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Lian, M. Wang, M. Rao, P. Yan, J.J. Yang, F. Miao, Appl. Phys. Lett. 110(17), 173504 (2017)CrossRefGoogle Scholar
  11. 11.
    M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, Nat. Mater. 10(8), 625–630 (2011)CrossRefGoogle Scholar
  12. 12.
    J.P. Strachan, A.C. Torrezan, F. Miao, M.D. Pickett, J.J. Yang, W. Yi, G. Medeiros-Ribeiro, R.S. Williams, IEEE Trans. Electron Devices 60(7), 2194–2202 (2013)CrossRefGoogle Scholar
  13. 13.
    F. Miao, W. Yi, I. Goldfarb, J.J. Yang, M.X. Zhang, M.D. Pickett, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, ACS Nano 6(3), 2312–2318 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Lübben, S. Wiefels, R. Waser, I. Valov, Adv. Electron. Mater. 4(1), 1700458 (2018)CrossRefGoogle Scholar
  15. 15.
    D.-Y. Cho, M. Luebben, S. Wiefels, K.-S. Lee, I. Valov, ACS Appl. Mater. Interfaces 9(22), 19287–19295 (2017)CrossRefGoogle Scholar
  16. 16.
    J.J. Yang, D. Strukov, D. Stewart, Nature Nanotech. 8(1), 13–24 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Prakash, D. Deleruyelle, J. Song, M. Bocquet, H. Hwang, Appl. Phys. Lett. 106(23), 233104 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P.-Y. Chen, H. Yeon, S. Yu, J. Kim, Nat. Mater. (2018)Google Scholar
  19. 19.
    H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Proc. IEEE 100(6), 1951–1970 (2012)CrossRefGoogle Scholar
  20. 20.
    J.J. Yang, R.S. Williams, ACM J. Emerg. Technol. Comput. Syst. 9, 1–20 (2013)Google Scholar
  21. 21.
    S. Long, X. Lian, C. Cagli, L. Perniola, E. Miranda, D. Jiménez, H. Lv, Q. Liu, L. Li, Z. Huo, M. Liu, J. Suñé, Reliabil. Phys. Symp. 33, 5A.6.1–5A.6.8 (2013)Google Scholar
  22. 22.
    M. Zhang, S. Long, G. Wang, X. Xu, Y. Li, Q. Liu, H. Lv, X. Lian, E. Miranda, J. Suñé, M. Liu, Appl. Phys. Lett. 105(19), 193501 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Lian, M. Wang, P. Yan, J.J. Yang, F. Miao, J. Electroceram., 1–5 (2017)Google Scholar
  24. 24.
    S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, IEEE Trans. Electron Devices 61(8), 2912–2919 (2014)CrossRefGoogle Scholar
  25. 25.
    K.M. Kim, J.J. Yang, E. Merced, C. Graves, S. Lam, N. Davila, M. Hu, N. Ge, Z. Li, R.S. Williams, C.S. Hwang, Adv. Elec. Mater. 1(6), 1500095 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Ji, C. Pan, M. Zhang, S. Long, X. Lian, F. Miao, F. Hui, Y. Shi, L. Larcher, E. Wu, M. Lanza, Appl. Phys. Lett. 108, 73103 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Long, X. Lian, C. Cagli, L. Perniola, E. Miranda, M. Liu, J. Suñé, IEEE Electron Device Lett. 34(8), 999–1001 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Lee, C. Du, K. Sun, E. Kioupakis, W. Lu, ACS Nano 10(3), 3571–3579 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Department of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations