Skip to main content

Advertisement

Log in

Crystallization kinetics and the dielectric properties of SrO-BaO-Nb2O5-B2O3 glass-ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Glass-ceramics materials of SrO-BaO-Nb2O5-B2O3 system have been prepared by conventional melt-casting followed by controlled crystallization. The crystallization kinetics, phase evolution, microstructure, breakdown strength and dielectric properties have been explored by differential scanning calorimetry (DSC), X-ray diffractometer (XRD), scanning electron microscope (SEM), and multifunction LCR meter. The results reveal that crystallization mechanism of this glass is believed to be three-dimensional interfacial growth. It was observed that predominant crystalline phase is Ba0.39Sr0.61Nb2O6 in these glass-ceramics crystallized at 750 °C, and the grain size increases with increase in crystallization time. The uniform microstructure can be seen clearly in glass-ceramics crystallized at 750 °C for 3 h, and the obtained glass-ceramics was found to possess optimal properties. Moreover, glass-ceramic with a dielectric constant of 58, the dielectric loss of 0.007 and breakdown strength of 1010 kV/cm could be achieved. In addition, energy storage density of glass-ceramics reached a maximal value of 2.62 J/cm3. To our knowledge, studies on SrO-BaO-Nb2O5-B2O3 glass-ceramics without SiO2 as a glass network former are few, and the melting temperature of the B2O3-based glass is lower than that of SiO2-based glass, which is conducive to the purpose of energy saving. These findings indicate that this glass may be a candidate for high energy-storage capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.W. McMillan, Glass-Ceramics (Academic Press, New York, 1964)

    Google Scholar 

  2. E.P. Gorzkowski, M.J. Pan, B. Bender, C.C.M. Wu, J. Electroceram. 18(3-4), 269–276 (2007)

    Article  CAS  Google Scholar 

  3. T.Y. Liu, G.H. Chen, J. Song, C.L. Yuan, Ceram. Int. 39(5), 5553–5559 (2013)

    Article  CAS  Google Scholar 

  4. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313(5785), 334–336 (2006)

    Article  CAS  Google Scholar 

  5. B.J. Chu, X. Zhou, B. Neese, Q.M. Zhang, F. Baueret, IEEE T. Dielect. El. In. 13, 1162 (2006)

    Article  CAS  Google Scholar 

  6. T.Y. Liu, G.H. Chen, J. Song, C.L. Yuan, Trans. Nonferrous Met. Soc. China 24(3), 729–735 (2014)

    Article  CAS  Google Scholar 

  7. N.J. Smith, B. Rangarajan, M.T. Lanagan, C.G. Pantano, Mater. Lett. 63(15), 1245–1248 (2009)

    Article  CAS  Google Scholar 

  8. G.H. Chen, W.J. Zhang, X.Y. Liu, C.R. Zhou, J. Electroceram. 27(2), 78–82 (2011)

    Article  Google Scholar 

  9. Y. Zhang, J.J. Huang, T. Ma, X.R. Wang, C.S. Deng, X.M. Dai, J. Am. Ceram. Soc. 94(6), 1805–1810 (2011)

    Article  CAS  Google Scholar 

  10. A.K. Yadav, C.R. Gautam, P. Singh, RSC Adv. 5(4), 2819–2826 (2015)

    Article  CAS  Google Scholar 

  11. J.J. Huang, Y. Zhang, T. Ma, H.T. Li, L.W. Zhang, Appl. Phys. Lett. 96(4), 042902 (2010)

    Article  Google Scholar 

  12. S.X. Xue, S.H. Liu, W.Q. Zhang, B. Shen, J.W. Zhai, Appl. Phys. Lett. 106(16), 162903 (2015)

    Article  Google Scholar 

  13. J. Luo, J. Du, Q. Tang, C.H. Mao, IEEE Trans. Electron Dev. 55(12), 3549–3554 (2008)

    Article  CAS  Google Scholar 

  14. O.P. Thakur, D. Kumar, O.M. Parkash, L. Pandey, B. Mater, Sci. 18, 577 (1995)

    CAS  Google Scholar 

  15. S. Xiao, S.M. Xiu, S.X. Xue, B. Shen, J.W. Zhai, J. Mater. Sci. 51(12), 5880–5888 (2016)

    Article  CAS  Google Scholar 

  16. S. Xiao, S.M. Xiu, S.X. Xue, B. Shen, J.W. Zhai, J. Alloy Compd. 648, 745–750 (2015)

    Article  CAS  Google Scholar 

  17. A.K. Yadav, C.R. Gautam, P. Singh, J. Mater. Sci. Mater. Electron. 26, 5001 (2015)

    Article  CAS  Google Scholar 

  18. C. Davis III, A.L. Pertuit, J.C. Nino, J. Am. Ceram. Soc. 100(1), 65–73 (2017)

    Article  CAS  Google Scholar 

  19. Y. Hu, H.T. Tsai, Mater. Chem. Phys. 52(2), 184–188 (1998)

    Article  CAS  Google Scholar 

  20. L.J. Tang, W. Wang, B. Shen, J.W. Zhai, L.B. Kong, J. Electron. Mater. 44(1), 227–234 (2015)

    Article  CAS  Google Scholar 

  21. S.M. Xiu, S. Xiao, S.X. Xue, B. Shen, J.W. Zhai, J. Mater. Sci. Mater. Electron. 27, 5324 (2016)

    Article  CAS  Google Scholar 

  22. Y.M. Sung, J. Mater. Res. 16(07), 2039–2044 (2001)

    Article  CAS  Google Scholar 

  23. J. Du, B. Jones, M. Lanagan, Mater. Lett. 59(22), 2821–2826 (2005)

    Article  CAS  Google Scholar 

  24. B.J. Chu, B. Neese, M.R. Lin, S.G. Lu, Q.M. Zhang, Appl. Phys. Lett. 93(15), 152903 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Project of Technology Promotion and Industrialization for Key Basic Materials in China (No. 2017YFB0310200) and the National Natural Science Foundation of China (No. 51672310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anxian Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Song, J., Liu, T. et al. Crystallization kinetics and the dielectric properties of SrO-BaO-Nb2O5-B2O3 glass-ceramics. J Electroceram 43, 10–19 (2019). https://doi.org/10.1007/s10832-018-0166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0166-6

Keywords

Navigation