Journal of Electroceramics

, Volume 40, Issue 4, pp 323–331 | Cite as

Coke-tolerant La2Sn2O7-Ni-Gd0.1Ce0.9O1.95 composite anode for direct methane-fueled solid oxide fuel cells

  • Myunggeun Park
  • Jin Goo Lee
  • Ok Sung Jeon
  • Tae Ho Shin
  • Jae-ha Myung
  • Yong Gun Shul


Direct CH4-fueled solid oxide fuel cells (SOFCs) have been studied for a few decades, but carbon depositions on the Ni-based anodes are still remained as a major problem. In order to enhance coke tolerances and durability of SOFCs, La2Sn2O7 nano-powders are prepared by co-precipitation. The SOFCs with the different amounts of the La2Sn2O7 nano-powders in the Ni-GDC anodes are tested under dry CH4, and the 0.3 wt.% La2Sn2O7-Ni-GDC (0.3LNG) anodes show the highest cell performances of all anodes. The maximum power density of the cell is approximately 0.55 W cm−2 at 650 °C. The durability of the 0.3LNG cell is significantly enhanced without any carbon formations, showing approximately 0.69 V over 600 h at 0.3 A cm−2, whereas the conventional Ni-GDC cell is stopped only after 90 h. It suggests that the 0.3LNG is a promising anode material to enhance coke-tolerances and durability of direct-methane fuel cells.


La2Sn2O7 Solid oxide fuel cells Methane Low-temperatures 



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A03004416) and (NRF-2015M1A2A2056833) and by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174010201640).


  1. 1.
    Z.L. Zhan, S.A. Barnett, An octane-fueled solid oxide fuel cell. Science 208, 884 (2005)Google Scholar
  2. 2.
    L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ. Science 326, 126 (2009)CrossRefGoogle Scholar
  3. 3.
    E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 (1999)CrossRefGoogle Scholar
  4. 4.
    T. Hibino, A. Hashimoto, M. Yano, M. Suzuki, M. Sano, Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochim. Acta 48, 2531 (2003)CrossRefGoogle Scholar
  5. 5.
    W. Wang, C. Su, Y. Wu, R. Ran, Z. Shao, Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 113, 8104–8151 (2013)CrossRefGoogle Scholar
  6. 6.
    B. Hua, M. Li, J. Pu, B. Chi, L. Jian, BaZr0.1Ce0.7Y0.1Yb0.1O3− δ enhanced coking-free on-cell reforming for direct-methane solid oxide fuel cells. J. Mater. Chem. A 2, 12576–12582 (2014)CrossRefGoogle Scholar
  7. 7.
    W. Wang, F. Wang, Y. Chen, J. Qu, M.O. Tadé, Z. Shao, Ceramic lithium ion conductor to solve the anode coking problem of practical solid oxide fuel cells. Chem Sus Chem 8, 2978–2986 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Li, B. Hua, J. Luo, S.P. Jiang, J. Pu, B. Chi, L. Jian, Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium-and ytterbium-doped barium cerates for direct methane solid oxide fuel cells. J. Mater. Chem. A 3, 21609–21617 (2015)CrossRefGoogle Scholar
  9. 9.
    W. Wang, J. Qu, B. Zhao, G. Yang, Z. Shao, Core–shell structured Li0.33La0.56TiO3 perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells. J. Mater. Chem. A 3, 8545–8551 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Yoon, A. Manthiram, Hydrogen tungsten bronze as a decoking agent for long-life, natural gas-fueled solid oxide fuel cells. Energy Environ. Sci. 7, 3069–3076 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Wang, H. Zhu, G. Yang, H.J. Park, D.W. Jung, C. Kwakb, Z. Shao, A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. Power Sources 258, 134–141 (2014)CrossRefGoogle Scholar
  12. 12.
    W.Y. Lee, J. Hanna, A.F. Ghoniem, On the predictions of carbon deposition on the nickel anode of a SOFC and its impact on open-circuit conditions. J. Electrochem. Soc. 160, F94 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Sasaki, Y. Teraoka, Equilibria in fuel cell gases I. Equilibrium compositions and reforming conditions. J. Electrochem. Soc. 150, A878 (2003)CrossRefGoogle Scholar
  14. 14.
    K. Sasaki, Y. Teraoka, Equilibria in fuel cell gases. J. Electrochem. Soc. 150, A885 (2003)CrossRefGoogle Scholar
  15. 15.
    H. Kan, S.H. Hyun, Y.G. Shul, H. Lee, Improved solid oxide fuel cell anodes for the direct utilization of methane using Sn-doped Ni/YSZ catalysts. Catal. Commun. 11, 180 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Kan, H. Lee, Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel. Catal. Commun. 12, 36 (2010)CrossRefGoogle Scholar
  17. 17.
    J.H. Myung, H.J. Ko, J.J. Lee, J.H. Lee, S.H. Hyun, Synthesis and characterization of NiO/GDC–GDC dual nano-composite powders for high-performance methane fueled solid oxide fuel cells. Int. J. Hydrogen Energ. 37, 11351 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Park, H.J. Hwang, J.H. Moon, Catalytic combustion of methane over rare earth stannate pyrochlore. Catal. Lett. 87, 219 (2003)CrossRefGoogle Scholar
  19. 19.
    J.G. Lee, C.M. Lee, M. Park, Y.G. Shul, Direct methane fuel cell with La2Sn2O7–Ni–Gd0.1Ce0.9O1.95 anode and electrospun La0.6Sr0.4Co0.2Fe0.8O3−δ–Gd0.1Ce0.9O1.95 cathode. RSC Adv. 3, 11816–11822 (2013)CrossRefGoogle Scholar
  20. 20.
    S. Kim, H. Moon, J.H. Moon, J.S. Kim, H.W. Lee, S.H. Hyun, Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells. Solid State Ionics 178, 1304 (2007)CrossRefGoogle Scholar
  21. 21.
    H. Cheng, L. Wang, Z. Lu, A general aqueous sol–gel route to Ln2Sn2O7 Nanocrystals. Nanotechnology 19, 025706 (2008)CrossRefGoogle Scholar
  22. 22.
    H.Y. Luo, H.W. Zhou, L.W. Lin, D.B. Liang, C. Li, D. Fu, Q. Xin, Role of vanadium promoter in Rh-V/SiO2 catalysts for the synthesis of C2-oxygenates from syngas. J. Catal. 145, 232–234 (1994)CrossRefGoogle Scholar
  23. 23.
    A.G. Boudjahem, S. Monteverdi, M. Mercy, M.M. Bettahar, Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. J. Catal. 221, 325–334 (2004)CrossRefGoogle Scholar
  24. 24.
    F. Benseradj, F. Sadi, M. Chater, Hydrogen spillover studies on diluted Rh/Al2O3 catalyst. Appl. Catal. A 228, 135–144 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Liu, C. Li, F. Wang, S. He, H. Chen, Y. Zhao, M. Wei, D.G. Evans, X. Duan, Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO 2 catalyst. Catal. Sci. Technol. 3, 2627–2633 (2013)CrossRefGoogle Scholar
  26. 26.
    J.W. Shabaker, G.W. Huber, J.A. Dumesic, Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J. Catal. 222, 180–191 (2004)CrossRefGoogle Scholar
  27. 27.
    J. Nielsen, M. Mogensen, SOFC LSM: YSZ cathode degradation induced by moisture: An impedance spectroscopy study. Solid State Ionics 189, 74 (2011)CrossRefGoogle Scholar
  28. 28.
    E. Nikolla, J. Schwank, S. Linic, Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J. Catal. 250, 85–93 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Bio-molecular EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.School of ChemistryUniversity of St. AndrewFifeUK
  3. 3.Energy Materials, Energy & Environmental DivisionKorea Institute of Ceramic Engineering TechnologyJinju-siRepublic of Korea
  4. 4.Department of Materials Science and EngineeringIncheon National UniversityIncheonRepublic of Korea

Personalised recommendations