Skip to main content
Log in

Properties and crystallization kinetics of low temperature co-fired Li2O-Al2O3-SiO2 electroceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The glass-ceramic in the Li2O-Al2O3-SiO2 system has been prepared by melt quenching route. The crystallization kinetics was studied by differential scanning calorimetry. The effects of sintering temperature on the phase transformation, sintering behavior, bulk density, microstructure, thermal expansion, bending strength and dielectric properties were also investigated by X-ray diffractometry and scanning electron microscopy. (Li, Mg, Zn)1.7Al2O4Si6O12 is the first crystalline phase forming in the glass-ceramic and transforms to LiAlSi3O8 phase at 800 °C. The other two crystalline phases of ZrO2 and CaMgSi2O6 precipitate at 700 and 750 °C, respectively. The densification of this LAS glass-ceramic starts at around 730 °C and stops at about 805 °C. The coefficient of thermal expansion increases with the increasing sintering temperature. The sample sintered at 800 °C for 30 min exhibited excellent properties. The nonisothermal activation energy of crystallization is 149 kJ/mol and the values of Avrami constant (n) are in the range of 3.2 to 3.9. The LAS glass-ceramic sintered at 800 °C for 30 min showed excellent properties. This makes that this material suitable for a number of LTCC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Krautgasser, R. Danzer, M. Deluca, P. Supancic, F. Aldrian, R. Bermejo, Subcritical crack growth in multilayer low temperature co-fired ceramics designed with surface compressive stresses. J. Eur. Ceram. Soc. 36(16), 4095–4105 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.07.003

    Article  Google Scholar 

  2. L. Peng, X.Q. Tu, L.Z. Li, R. Wang, X.X. Zhong, Electrical conduction and polarization behaviors of low temperature sintered Sr1-xLaxFe12-xCoxO19 (x=0-0.3) hexaferrites. J. Alloys Compd. 686, 292–297 (2016). https://doi.org/10.1016/j.jallcom.2016.05.342

    Article  Google Scholar 

  3. C.H. Su, F.C. Lin, T.M. Chu, C.L. Huang, Structural characteristics and microwave dielectric properties of low-firing Ba(Co1-xMgx)(2)(VO4)(2) (x=0-1) ceramics. J. Alloys Compd. 686, 608–615 (2016). https://doi.org/10.1016/j.jallcom.2016.06.062

    Article  Google Scholar 

  4. K.M.S. Manu, T.P.D. Rajan, B.C. Pai, Structure and properties of squeeze infiltrated zirconia grade-aluminosilicate short fiber reinforced aluminum composites. J. Alloys Compd. 688, 489–499 (2016). https://doi.org/10.1016/j.jallcom.2016.07.135

    Article  Google Scholar 

  5. E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, P. Jollivet, A. Le Gac, M. Fournier, A. Mesbah, F. Vasconcelos, Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass. J. Non-Cryst. Solids 427, 120–133 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.07.001

    Article  Google Scholar 

  6. S. Taruta, T. Ichinose, T. Yamaguchi, K. Kitajima, Preparation of transparent lithium-mica glass-ceramics. J. Non-Cryst. Solids 352(52-54), 5556–5563 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.09.028

    Article  Google Scholar 

  7. M. Mizuno, K. Nakamura, T. Konishi, K. Fukao, Glass transition and thermal expansivity in silica-polystyrene nanocomposites. J. Non-Cryst. Solids 357(2), 594–597 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.06.061

    Article  Google Scholar 

  8. P. Riello, P. Canton, N. Comelato, S. Polizzi, M. Verità, G. Fagherazzi, H. Hofmeister, S. Hopfe, Nucleation and crystallization behavior of glass-ceramic materials in the Li2O-Al2O3-SiO2 system of interest for their transparency properties. J. Non-Cryst. Solids 288(1-3), 127–139 (2001). https://doi.org/10.1016/S0022-3093(01)00518-X

    Article  Google Scholar 

  9. X. Guo, H. Yang, C. Han, F. Song, Crystallization and microstructure of Li2O-Al2O3-SiO2 glass containing complex nucleating agent. Thermochim. Acta 444(2), 201–205 (2006). https://doi.org/10.1016/j.tca.2006.02.016

    Article  Google Scholar 

  10. W. Ostertag, G.R. Fischer, J.P. Williams, Thermal expansion of synthetic β-Spodumene and β-Spodumene-silica solid solutions. J. Am. Ceram. Soc. 51(11), 651–654 (1968)

    Article  Google Scholar 

  11. S.R. Mccann, Y. Sato, V. Sundaram, R.T. Rao, S.K. Sitaraman, Study of cracking of thin glass interposers intended for microelectronic packaging substrates. Electron Compon Technol Conf, 1938–1944 (2015)

  12. A. Gaddam, H.R. Fernandes, D.U. Tulyaganov, M.J. Ribeiro, J.M.F. Ferreira, The roles of P2O5 and SiO2/Li2O ratio on the network structure and crystallization kinetics of non-stoichiometric lithium disilicate based glasses. J. Non-Cryst. Solids 481, 512–521 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.11.034

    Article  Google Scholar 

  13. E. Kleebusch, C. Patzig, M. Krause, Y. Hu, T. Hoche, C. Russel, The formation of nanocrystalline ZrO2 nuclei in a Li2O-Al2O3-SiO2 glass - a combined XANES and TEM study. Sci. Rep. 7(1), 10869 (2017). https://doi.org/10.1038/s41598-017-11228-7

    Article  Google Scholar 

  14. Q. Zu, S.X. Huang, Y. Zhang, S.L. Huang, J.S. Liu, H. Li, Compositional effects on mechanical properties, viscosity, and crystallization of (Li2O, B2O3, MgO)-Al2O3-SiO2 glasses. J. Alloys Compd. 728, 552–563 (2017). https://doi.org/10.1016/j.jallcom.2017.08.294

    Article  Google Scholar 

  15. L. Vladislavova, C. Thieme, C. Russel, The effect of ZrO2 on the crystallization of a glass in the system BaO/SrO/ZnO/SiO2: Surface versus bulk crystallization. J. Mater. Sci. 52(7), 4052–4060 (2017). https://doi.org/10.1007/s10853-016-0667-0

    Article  Google Scholar 

  16. F.J. Gotor, J.M. Criado, J. Málek, Limitations of the Augis and Bennett method for kinetic analysis of the crystallization of glasses and conditions for correct use. J. Am. Ceram. Soc. 84, 1797–1802 (2001)

    Article  Google Scholar 

  17. Y.P. Fu, F.Y. Tsai, Crystallization kinetics of Bi0.25Y2.75Fe5O12 prepared from coprecipitation process under non-isothermal conditions. Ceram. Int. 34(8), 2011–2015 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Qing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, Z., Li, B. & Zhang, S. Properties and crystallization kinetics of low temperature co-fired Li2O-Al2O3-SiO2 electroceramics. J Electroceram 40, 316–322 (2018). https://doi.org/10.1007/s10832-018-0132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0132-3

Keywords

Navigation