Skip to main content
Log in

Evaluation of La2CoTi0.7Mg0.3O6 as an electrode material for a symmetrical SOFC

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

La2CoTi0.7Mg0.3O6 (LCTM) material has been prepared at 1473 K for 24 h in air. X-ray powder diffraction study has revealed that it contains two orthorhombic perovskite phases (in a ratio ~1:4) with close unit cell parameters. Annealing of LCTM in reducing (Ar/H2, 8%) atmosphere at 1173 K for 12 h has resulted in the preparation of a single-phase material containing the GdFeO3-type perovskite phase with the unit cell parameters of a = 5.5631(3) Å, b = 5.5462(3) Å, c = 7.8522(5) Å. LCTM material exhibits a reversible transformation of a mixture of two perovskite phases with close cation content in air and a single perovskite phase in a reducing atmosphere. Both as-prepared and reduced LCTM samples have been studied by thermogravimetric analysis and dilatometry in air and Ar/H2 (8%). No chemical interaction between the as-prepared LCTM and standard electrolyte materials for SOFC like GDC and YSZ has been observed up to 1273 K. High-temperature electrical conductivity of the as-prepared LCTM at variable oxygen partial pressure (10−4-0.21 atm) showed weak dependence over pO2 with Ea = 0.48 ± 0.01 eV. AC impedance study of the symmetrical cells LCTM/GDC/LCTM has revealed ASR value at 1173 K of ~8.1 ± 0.1 Ω∙cm2 in air and 0.24 ± 0.05 Ω∙cm2 in a reducing atmosphere. These results allow to consider LCTM as a promising electrode material for a symmetrical SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.Y. Istomin, E.V. Antipov, Russ. Chem. Rev. 82, 686 (2013)

    Article  Google Scholar 

  2. J. Mizusaki, M. Yoshiro, S. Yamauchi, K. Fueki, J. Electrochem. Soc. 136, 2082 (1989)

    Article  Google Scholar 

  3. K. Kakinuma, T. Arisaka, H. Yamamura, J. Ceram. Soc. Jpn. 112, 342 (2004)

    Article  Google Scholar 

  4. A. Carter, A. Selcuk, R.J. Chater, J. Kajda, J.A. Kilner, B.C.H. Steele, Solid State Ionics 597, 53–56 (1992)

    Google Scholar 

  5. P.G. Radaelli, S.-W. Cheong, Phys. Rev. B: Condens. Matter 66, 094408 (2002)

    Article  Google Scholar 

  6. H. Ullmann, N. Trofimenko, F. Tietz, D. Stoever, A. Ahmad-Khanlou, Solid State Ionics 138, 79 (2000)

    Article  Google Scholar 

  7. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76, 259 (1995)

    Article  Google Scholar 

  8. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76, 273 (1995)

    Article  Google Scholar 

  9. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, J. Solid State Chem. 118, 117 (1995)

    Article  Google Scholar 

  10. S.Y. Istomin, O.A. Tyablikov, S.M. Kazakov, E.V. Antipov, A.I. Kurbakov, A.A. Tsirlin, N. Hollmann, Y.Y. Chin, H.-J. Lin, C.T. Chen, A. Tanaka, L.H. Tjeng, Z. Hu, Dalton Trans. 44, 10708 (2015)

    Article  Google Scholar 

  11. W. Tan, C. Pan, S. Yang, Q. Zhong, J. Power Sources 277, 416 (2015)

    Article  Google Scholar 

  12. P. Zhang, Y.-H. Huang, J.-G. Cheng, Z.-Q. Mao, J.B. Goodenough, J. Power Sources 196, 1738 (2011)

    Article  Google Scholar 

  13. A. Aguadero, J.A. Alonso, R. Martinez-Coronado, M.J. Martinez-Lope, M.T. Fernandez-Diaz, J. Appl. Phys. 109(3) (2011)

  14. Y.H. Huang, G. Liang, M. Croft, M. Lehtimäki, M. Karppinen, J.B. Goodenough, Chem. Mater. 21, 2319 (2009)

    Article  Google Scholar 

  15. T. Wei, Q. Zhang, Y.H. Huang, J.B. Goodenough, J. Mater. Chem. 22, 225 (2012)

    Article  Google Scholar 

  16. R. Martínez-Coronado, A. Aguadero, D. Pérez-Coll, L. Troncoso, J.A. Alonso, M.T. Fernández-Díaz, Int. J. Hydrog. Energy 37, 18310 (2012)

    Article  Google Scholar 

  17. S. Shafeie, J. Grins, S.Y. Istomin, L. Karvonen, S.A. Chen, T.H. Chen, J.M. Chen, A. Weidenkaff, M. Karppinen, T. Sirtl, G. Svensson, J. Solid State Chem. 184, 177 (2011)

    Article  Google Scholar 

  18. S. Shafeie, J. Grins, S.Y. Istomin, A.A. Gippius, L. Karvonen, S. Populoh, A. Weidenkaff, J. Koehler, G. Svensson, J. Mater. Chem. 22, 16269 (2012)

    Article  Google Scholar 

  19. S. Shafeie, B. Dreyer, R.H.P. Awater, T. Golod, J. Grins, J.J. Biendicho, S.Y. Istomin, G. Svensson, J. Solid State Chem. 229, 243 (2015)

    Article  Google Scholar 

  20. A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory report LA-UR-86-748 (2000); B.H. Toby, “EXPGUI, a graphical user interface for GSAS”. J. Appl. Crystallogr. 34, 210 (2001)

    Article  Google Scholar 

  21. A. Meden, M. Ceh, Mater. Sci. Forum 278–281, 773 (1998)

  22. Q. Liu, X. Dong, G. Xiao, F. Zhao, F. Chen, Adv. Mater. 22, 5478 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Russian Science Foundation (project number 16-13-10327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Istomin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazo, G.N., Lyskov, N.V., Istomin, S.Y. et al. Evaluation of La2CoTi0.7Mg0.3O6 as an electrode material for a symmetrical SOFC. J Electroceram 40, 162–169 (2018). https://doi.org/10.1007/s10832-018-0116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0116-3

Keywords

Navigation