Journal of Electroceramics

, Volume 40, Issue 2, pp 150–155 | Cite as

Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 cathode for solid oxide fuel cells

  • A. A. Solovyev
  • I. V. Ionov
  • A. V. Shipilova
  • P. D. Maloney


Studied here are the effects of sintering temperature of La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O2 (LSCF–CGO) cathodes on their microstructure and performance of intermediate-temperature solid oxide fuel cells (IT-SOFC). Phase composition, microstructure and electrochemical properties were investigated by X-ray powder diffraction (XRD), scanning electron microscopy and current-voltage characteristics measurement, respectively. The electrochemical performances of Ni–YSZ anode-supported SOFC having YSZ electrolyte (4 μm) with CGO interlayer (2 μm) are studied with LSCF–CGO (50:50 wt%) cathodes in the temperature range 600–800 °C using H2 as fuel and air as oxidant. The cathode microstructure was found to be less dense and to contain smaller grains as the sintering temperature was decreased in the range 1250–1150 °C. Results reveal that sintering temperature and electrode morphology have strong influence on electrochemical performances of the IT-SOFC. Highest maximum power density of ∼1.26 W/cm2 is achieved during cell testing at 800 °C with a cathode sintered at 1200 °C. However, cells with in-situ sintered LSCF–CGO cathode showed highest power density at 600 °C (0.48 W/cm2) because there is no particle coarsening at low sintering temperatures.


LSCF–CGO Composite cathode Microstructure Performance Intermediate-temperature solid oxide fuel cells 



This work was supported by the Russian Science Foundation (grant No. 17-79-30071).


  1. 1.
    E.P. Murray, M.J. Sever, S.A. Barnett, Solid State Ionics 148, 27 (2002)CrossRefGoogle Scholar
  2. 2.
    L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ionics 76, 273 (1995)CrossRefGoogle Scholar
  3. 3.
    A.J. Jacobson, Chem. Mater. 22, 660 (2010)CrossRefGoogle Scholar
  4. 4.
    Z. Chen, X. Wang, F. Giuliani, A. Atkinson, Ceram. Int. 40, 3913 (2014)CrossRefGoogle Scholar
  5. 5.
    N. Tangtrakarn, M. Swanson, P. Moran, J. Kuebler, J. Kapat, N. Orlovskaya, Mater. Res. Soc. Symp. Proc. 972, 187 (2007)Google Scholar
  6. 6.
    M.C. Tucker, J. Power Sources 195, 4570 (2010)CrossRefGoogle Scholar
  7. 7.
    A.I. Kirdyashkin, V.D. Kitler, A.S. Maznoy, A.A. Solov’ev, A.N. Kovalchuk, I.V. Ionov, Adv. Mater. Res. 1040, 19 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Nielsen, P. Hjalmarsson, M.H. Hansen, P. Blennow, J. Power Sources 245, 418 (2014)CrossRefGoogle Scholar
  9. 9.
    V. Dusastre, J.A. Kilner, Solid State Ionics 126, 163 (1999)CrossRefGoogle Scholar
  10. 10.
    Y. Leng, S.H. Chan, Q. Liu, Int. J. Hydrog. Energy 33, 3808 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Sønderby, T. Klemensø, B.H. Christensen, K.P. Almtoft, J. Lu, L.P. Nielsen, P. Eklund, J. Power Sources 267, 452 (2014)CrossRefGoogle Scholar
  12. 12.
    R. Knibbe, J. Hjelm, M. Menon, N. Pryds, M. Søgaard, H.J. Wang, K. Neufeld, J. Am. Ceram. Soc. 93, 2877 (2010)CrossRefGoogle Scholar
  13. 13.
    T. Klemensø, J. Nielsen, P. Blennow, A.H. Persson, T. Stegk, B.H. Christensen, S. Sønderby, J. Power Sources 196, 9459 (2011)CrossRefGoogle Scholar
  14. 14.
    A.A. Solovyev, A.V. Shipilova, I.V. Ionov, A.N. Kovalchuk, S.V. Rabotkin, V.O. Oskirko, J. Electron. Mater. 45, 3921 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Izuki, M.E. Brito, K. Yamaji, H. Kishimoto, D.-H. Cho, T. Shimonosono, T. Horita, H. Yokokawa, J. Power Sources 196, 7232 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Zhao, J. Drennan, C. Kong, S. Amarasinghed, S.P. Jiang, J. Mater. Chem. A 2, 11114 (2014)CrossRefGoogle Scholar
  17. 17.
    F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos Santos, J.M. Sasaki, Acta Cryst A72, 385 (2016)Google Scholar
  18. 18.
    C. Ding, K. Sato, J. Mizusaki, T. Hashid, Ceram. Int. 38, 85 (2012)CrossRefGoogle Scholar
  19. 19.
    J.X. Wang, J. Shao, Y.K. Tao, W.G. Wang, ECS Trans. 25, 595 (2009)CrossRefGoogle Scholar
  20. 20.
    W. Huebner, D.M. Reed, H.U. Anderson, In Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), ed. By U. Stimming, S.C. Singhal, H. Tagawa, W. Lehnert (The Electrochemical Society, New Jersey, 1997), p. 411Google Scholar
  21. 21.
    H.S. Song, W.H. Kim, S.H. Hyun, J. Moon, J. Electroceram. 17, 759 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of High Current ElectronicsTomskRussia
  3. 3.Tomsk State Pedagogical UniversityTomskRussia

Personalised recommendations