Journal of Electroceramics

, Volume 39, Issue 1–4, pp 4–20 | Cite as

Memristive computing devices and applications

  • Mohammed A. Zidan
  • An Chen
  • Giacomo Indiveri
  • Wei D. LuEmail author


Advances in electronics have revolutionized the way people work, play and communicate with each other. Historically, these advances were mainly driven by CMOS transistor scaling following Moore’s law, where new generations of devices are smaller, faster, and cheaper, leading to more powerful circuits and systems. However, conventional scaling is now facing major technical challenges and fundamental limits. New materials, devices, and architectures are being aggressively pursued to meet present and future computing needs, where tight integration of memory and logic, and parallel processing are highly desired. To this end, one class of emerging devices, termed memristors or memristive devices, have attracted broad interest as a promising candidate for future memory and computing applications. Besides tremendous appeal in data storage applications, memristors offer the potential to enable efficient hardware realization of neuromorphic and analog computing architectures that differ radically from conventional von Neumann computing architectures. In this review, we analyze representative memristor devices and their applications including mixed signal analog-digital neuromorphic computing architectures, and highlight the potential and challenges of applying such devices and architectures in different computing applications.


Resistive memory Neuromorphic computing Nanoionics Filament Memristor 


  1. 1.
    S. Borkar, A.A. Chien, The future of microprocessors. Commun. ACM 54, 67–77 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Kogge, et al., Exascale computing study: Technology challenges in achieving exascale systems. Defense Advanced Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Technical Report (2008)Google Scholar
  3. 3.
    J.M. Shalf, R. Leland, Computing beyond Moore’s law. Computer 12, 14–23 (2015)CrossRefGoogle Scholar
  4. 4.
    M.M. Waldrop, The chips are down for Moore’s law. Nat. News 530, 144 (2016)CrossRefGoogle Scholar
  5. 5.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRefGoogle Scholar
  6. 6.
    K.-H. Kim et al., A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2011)CrossRefGoogle Scholar
  7. 7.
    Y.V. Pershin, M. Di Ventra, Neuromorphic, digital, and quantum computation with memory circuit elements. Proc. IEEE 100, 2071–2080 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Gaba, P. Knag, Z. Zhang, W. Lu, Memristive devices for stochastic computing. In 2014 I.E. International Symposium on Circuits and Systems (ISCAS), 2592–2595 (2014)Google Scholar
  9. 9.
    M.A. Zidan, Y. Jeong, J.H. Shin, C. Du, W.D. Lu, Field-programmable crossbar array (FPCA) for reconfigurable computing. IEEE Trans. Multi-Scale Comput. Syst (2017)Google Scholar
  10. 10.
    J. Borghetti et al., ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Mead, Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990)CrossRefGoogle Scholar
  12. 12.
    G. Indiveri, T.K. Horiuchi, Frontiers in neuromorphic engineering. Front. Neurosci. 5, 118 (2011)Google Scholar
  13. 13.
    E. Chicca, F. Stefanini, C. Bartolozzi, G. Indiveri, Neuromorphic electronic circuits for building autonomous cognitive systems. Proc. IEEE 102, 1367–1388 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Gaba, P. Sheridan, J. Zhou, S. Choi, W. Lu, Stochastic memristive devices for computing and neuromorphic applications. Nano 5, 5872–5878 (2013)Google Scholar
  15. 15.
    M. Prezioso et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)CrossRefGoogle Scholar
  16. 16.
    G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24, 384010 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theor. 18, 507–519 (1971)CrossRefGoogle Scholar
  18. 18.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Gaba, F. Cai, J. Zhou, W.D. Lu, Ultralow sub-1-nA operating current resistive memory with intrinsic non-linear characteristics. IEEE Electron Device Lett. 35, 1239–1241 (2014)CrossRefGoogle Scholar
  20. 20.
    J.J. Yang et al., High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)CrossRefGoogle Scholar
  21. 21.
    J. Zhou et al., Very low-programming-current RRAM with self-rectifying characteristics. IEEE Electron Device Lett. 37, 404–407 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Younis et al., High-performance nanocomposite based memristor with controlled quantum dots as charge traps. ACS Appl. Mater. Interfaces 5, 2249–2254 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying ti/pr0.7ca0.3mno3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004)CrossRefGoogle Scholar
  24. 24.
    V. Dubost et al., Resistive switching at the nanoscale in the mott insulator compound gata4se8. Nano Lett. 13, 3648–3653 (2013)CrossRefGoogle Scholar
  25. 25.
    P. Stoliar et al., Nonthermal and purely electronic resistive switching in a mott memory. Phys. Rev. B 90, 045146 (2014)CrossRefGoogle Scholar
  26. 26.
    D.J. Wouters, R. Waser, M. Wuttig, Phase-change and redox-based resistive switching memories. Proc. IEEE 103, 1274 (2015)CrossRefGoogle Scholar
  27. 27.
    H.-S.P. Wong et al., Phase change memory. Proc. IEEE 98, 2201–2227 (2010)CrossRefGoogle Scholar
  28. 28.
    Z. Diao et al., Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Phys. Condens. Matter 19, 165209 (2007)CrossRefGoogle Scholar
  29. 29.
    N. Abele, et al., 1T MEMS memory based on suspended gate mosfet. in IEEE International Electron Devices Meeting (IEDM), 1–4 (2006)Google Scholar
  30. 30.
    I. Valov, W.D. Lu, Nanoscale electrochemistry using dielectric thin films as solid electrolytes. Nanoscale 8, 13828-13837 (2016)Google Scholar
  31. 31.
    I. Valov, Redox-based resistive switching memories (rerams): Electrochemical systems at the atomic scale. Chem Electro Chem 1, 26–36 (2014)Google Scholar
  32. 32.
    Y. Yang et al., Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Yang et al., Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014)Google Scholar
  34. 34.
    M.N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331–338 (2005)CrossRefGoogle Scholar
  35. 35.
    K. Sankaran et al., Modeling of copper diffusion in amorphous aluminum oxide in CBRAM memory stack. ECS Trans. 45, 317–330 (2012)CrossRefGoogle Scholar
  36. 36.
    Gilbert, N., Zhang, Y., Dinh, J., Calhoun, B. & Hollmer, S. A 0.6 V 8 pJ/write non-volatile CBRAM macro embedded in a body sensor node for ultra low energy applications. in IEEE Symposium on VLSI Circuits (VLSIC) (2013)Google Scholar
  37. 37.
    C. Gopalan et al., Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process. Solid State Electron. 58, 54–61 (2011)CrossRefGoogle Scholar
  38. 38.
    International technology roadmap for semiconductors (ITRS).
  39. 39.
    K.-H. Kim, S. Hyun Jo, S. Gaba, W. Lu, Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96, 053106 (2010)CrossRefGoogle Scholar
  40. 40.
    S. Ambrogio, S. Balatti, S. Choi, D. Ielmini, Impact of the mechanical stress on switching characteristics of electrochemical resistive memory. Adv. Mater. 26, 3885–3892 (2014)CrossRefGoogle Scholar
  41. 41.
    Y. Dong, G. Yu, M.C. McAlpine, W. Lu, C.M. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8, 386–391 (2008)CrossRefGoogle Scholar
  42. 42.
    S. Nandakumar, M. Minvielle, S. Nagar, C. Dubourdieu, B. Rajendran, A 250 mv cu/sio2/w memristor with half-integer quantum conductance states. Nano Lett. 16, 1602–1608 (2016)CrossRefGoogle Scholar
  43. 43.
    T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology 21, 425205 (2010)CrossRefGoogle Scholar
  44. 44.
    T. Berzina et al., Electrochemical control of the conductivity in an organic memristor: A time-resolved X-ray fluorescence study of ionic drift as a function of the applied voltage. ACS Appl. Mater. Interfaces 1, 2115–2118 (2009)CrossRefGoogle Scholar
  45. 45.
    M.D. Pickett et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)CrossRefGoogle Scholar
  46. 46.
    Govoreanu, B. et al., 10× 10nm2 Hf/HfOx crossbar resistive ram with excellent performance, reliability and low-energy operation. in IEEE International Electron Devices Meeting (IEDM), 31–6 (2011)Google Scholar
  47. 47.
    S. Menzel et al., Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011)CrossRefGoogle Scholar
  48. 48.
    F. Anwar, J. Nogan, P. Zarkesh-Ha, M. Osinski, Multilevel resistance in Ti/Pt/AlOx/HfOy/Ti/Pt/Ag resistive switching devices. in IEEE Nanotechnology Materials and Devices Conference (NMDC), 1–3 (2015)Google Scholar
  49. 49.
    S.H. Jo et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  50. 50.
    M.-J. Lee et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5- x/TaO2x bilayer structures. Nat. Mater. 10, 625–630 (2011)CrossRefGoogle Scholar
  51. 51.
    A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011)CrossRefGoogle Scholar
  52. 52.
    H.S.P. Wong et al., Metal-oxide RRAM. Proc. IEEE 100(1951–1970) (2012)Google Scholar
  53. 53.
    M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007)CrossRefGoogle Scholar
  54. 54.
    D. Loke et al., Ultrafast switching in nanoscale phase-change random access memory with superlattice-likestructures. Nanotechnology 22, 254019 (2011)CrossRefGoogle Scholar
  55. 55.
    S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014)CrossRefGoogle Scholar
  56. 56.
    Y.-M. Chang et al., Improving PCM endurance with a constant-cost wear leveling design. ACM Trans. Des. Autom. Electron. Syst. 22, 9 (2016)CrossRefGoogle Scholar
  57. 57.
    J.P. Strachan et al., Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010)CrossRefGoogle Scholar
  58. 58.
    D.-H. Kwon et al., Atomic structure of conducting nanofilaments in tio2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)CrossRefGoogle Scholar
  59. 59.
    J.-Y. Chen, C.-W. Huang, C.-H. Chiu, Y.-T. Huang, W.-W. Wu, Switching kinetic of VCM-based memristor: Evolution and positioning of nanofilament. Adv. Mater. 27, 5028–5033 (2015)CrossRefGoogle Scholar
  60. 60.
    H. Nili et al., Donor-induced performance tuning of amorphous SrTiO3 memristive nanodevices: Multistate resistive switching and mechanical tunability. Adv. Funct. Mater. 25, 3172–3182 (2015)CrossRefGoogle Scholar
  61. 61.
    K.M. Kim, S.R. Lee, S. Kim, M. Chang, C.S. Hwang, Self-limited switching in Ta2O5/TaOx memristors exhibiting uniform multilevel changes in resistance. Adv. Funct. Mater. 25, 1527–1534 (2015)CrossRefGoogle Scholar
  62. 62.
    C. Nail, et al., Understanding RRAM endurance, retention and window margin trade-off using experimental results and simulations. in IEEE International Electron Devices Meeting (IEDM), 2016, IEEE, 4–5 (2016)Google Scholar
  63. 63.
    F. Xiong, A. Liao, E. Pop, Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Appl. Phys. Lett. 95, 243103 (2009)CrossRefGoogle Scholar
  64. 64.
    G. Indiveri, S.-C. Liu, Memory and information processing in neuromorphic systems. Proc. IEEE 103, 1379–1397 (2015)CrossRefGoogle Scholar
  65. 65.
    K.M. Bresniker, S. Singhal, R.S. Williams, Adapting to thrive in a new economy of memory abundance. Computer 48, 44–53 (2015)CrossRefGoogle Scholar
  66. 66.
    M. Zidan et al., Single-readout high-density memristor crossbar. Sci Rep 6, 18863 (2016)CrossRefGoogle Scholar
  67. 67.
    P.O. Vontobel et al., Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20, 425204 (2009)CrossRefGoogle Scholar
  68. 68.
    M.M. Shulaker et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017)CrossRefGoogle Scholar
  69. 69.
    M.M.S. Aly et al., Energy-efficient abundant-data computing: The N3XT 1,000 x. Computer 48, 24–33 (2015)Google Scholar
  70. 70.
    H. Li, et al., Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language recognition. in IEEE International Electron Devices Meeting (IEDM), IEEE, 16–1 (2016)Google Scholar
  71. 71.
    Wear-leveling techniques in NAND flash devices. Tech. Rep. TN-29-42, Micron Technology, Inc. (2008)Google Scholar
  72. 72.
    M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, K.N. Salama, Memristor-based memory: The sneak paths problem and solutions. Microelectron. J. 44, 176–183 (2013)CrossRefGoogle Scholar
  73. 73.
    M.A. Zidan, A.M. Eltawil, F. Kurdahi, H.A. Fahmy, K.N. Salama, Memristor multiport readout: A closed-form solution for sneak paths. IEEE Trans. Nanotechnol. 13, 274–282 (2014)CrossRefGoogle Scholar
  74. 74.
    J.J. Yang et al., Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501 (2012)CrossRefGoogle Scholar
  75. 75.
    A. Levisse, B. Giraud, J. Noel, M. Moreau, J. Portal, Sneakpath compensation circuit for programming and read¨ operations in rram-based crosspoint architectures. in Non-Volatile Memory Technology Symposium (NVMTS), IEEE, 1–4 (2015)Google Scholar
  76. 76.
    J. Zhou, K.-H. Kim, W. Lu, Crossbar RRAM arrays: Selector device requirements during read operation. IEEE Trans. Electron Devices 61, 1369–1376 (2014)CrossRefGoogle Scholar
  77. 77.
    S. Kim, J. Zhou, W.D. Lu, Crossbar RRAM arrays: Selector device requirements during write operation. IEEE Trans. Electron Devices 61, 2820–2826 (2014)CrossRefGoogle Scholar
  78. 78.
    M. Wang et al., Conduction mechanism of a TaOx-based selector and its application in crossbar memory arrays. Nano 7, 4964–4970 (2015)Google Scholar
  79. 79.
    S.-S. Sheu, et al., A 4mb embedded slc resistive-ram macro with 7.2 ns read-write random-access time and 160ns mlc-access capability. in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE, 200–202 (2011)Google Scholar
  80. 80.
    J.H. Poikonen, E. Lehtonen, M. Laiho, On synthesis of boolean expressions for memristive devices using sequential implication logic. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31, 1129–1134 (2012)CrossRefGoogle Scholar
  81. 81.
    X. Zhu et al., Performing stateful logic on memristor memory. IEEE Trans. Circuits Syst. II: Express Briefs 60, 682–686 (2013)CrossRefGoogle Scholar
  82. 82.
    P.-E. Gaillardon et al., The programmable logic-in-memory (PLiM) computer. in Proceedings of the, Conference on design, Automation & Test in Europe. EDA Consortium 427–432(2016) (2016)Google Scholar
  83. 83.
    W. Robinett et al., A memristor-based nonvolatile latch circuit. Nanotechnology 21, 235203 (2010)CrossRefGoogle Scholar
  84. 84.
    S. Kvatinsky, et al., Mrl–memristor ratioed logic. in International Workshop on Cellular Nanoscale Networks and their Applications, 1–6 (2012)Google Scholar
  85. 85.
    S. Kvatinsky et al., Memristor-based material implication (imply) logic: Design principles and methodologies. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22, 2054–2066 (2014)CrossRefGoogle Scholar
  86. 86.
    B. Chen, et al., Efficient in-memory computing architecture based on crossbar arrays. in 2015 I.E. International Electron Devices Meeting (IEDM), 17–5 (2015)Google Scholar
  87. 87.
    X. Tang, G. Kim, P.-E. Gaillardon, G. De Micheli, A study on the programming structures for RRAM-based FPGA architectures. IEEE Trans. Circuits Syst. I, Reg. Papers 63, 503–516 (2016)CrossRefGoogle Scholar
  88. 88.
    Y. Y. Liauw, Z. Zhang, W. Kim, A. El Gamal, S. S. Wong, Nonvolatile 3D-FPGA with monolithically stacked rram-based configuration memory. in IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), IEEE, 406–408 (2012)Google Scholar
  89. 89.
    J. Cong, B. Xiao, FPGA-RPI: A novel fpga architecture with rram-based programmable interconnects. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22, 864–877 (2014)CrossRefGoogle Scholar
  90. 90.
    K. Shirriff, The surprising story of the first microprocessors. IEEE Spectr. 53, 48–54 (2016)CrossRefGoogle Scholar
  91. 91.
    A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks. in Advances in neural information processing systems, 1097–1105 (2012)Google Scholar
  92. 92.
    D. Silver et al., Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)CrossRefGoogle Scholar
  93. 93.
    Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)CrossRefGoogle Scholar
  94. 94.
    P.A. Merolla et al., A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014)CrossRefGoogle Scholar
  95. 95.
    N. Qiao et al., A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9, 141 (2015)CrossRefGoogle Scholar
  96. 96.
    T. Simonite, A better way to build brain-inspired chips. MIT Technology Review (2015)Google Scholar
  97. 97.
    F. Alibart, E. Zamanidoost, D.B. Strukov, Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat. Commun 4 (2013)Google Scholar
  98. 98.
    P.M. Sheridan, C. Du, W.D. Lu, Feature extraction using memristor networks. IEEE Trans. Neural Netw. Learn. Syst. 27, 2327–2336 (2016)CrossRefGoogle Scholar
  99. 99.
    S.P. Adhikari, C. Yang, H. Kim, L.O. Chua, Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23, 1426–1435 (2012)CrossRefGoogle Scholar
  100. 100.
    S.P. Adhikari, H. Kim, R.K. Budhathoki, C. Yang, L.O. Chua, A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses. IEEE Trans. Circuits Syst. I, Reg. Papers 62, 215–223 (2015)CrossRefGoogle Scholar
  101. 101.
    M. Chu et al., Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron. IEEE Trans. Ind. Electron. 62, 2410–2419 (2015)CrossRefGoogle Scholar
  102. 102.
    D. Querlioz, O. Bichler, C. Gamrat, Simulation of a memristor-based spiking neural network immune to device variations. in International Joint Conference on Neural Networks (IJCNN), 1775–1781 (2011)Google Scholar
  103. 103.
    M. Al-Shedivat, R. Naous, G. Cauwenberghs, K.N. Salama, Memristors empower spiking neurons with stochasticity. IEEE J. Emerging Sel. Top. Circuits Syst. 5, 242–253 (2015)CrossRefGoogle Scholar
  104. 104.
    M. Suri et al., Bio-inspired stochastic computing using binary cbram synapses. IEEE Trans. Electron Devices 60, 2402–2409 (2013)CrossRefGoogle Scholar
  105. 105.
    B.V. Benjamin et al., Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716 (2014)CrossRefGoogle Scholar
  106. 106.
    J. Park, T. Yu, S. Joshi, C. Maier, G. Cauwenberghs, Hierarchical address event routing for reconfigurable large-scale neuromorphic systems. IEEE Trans. Neural Netw. Learn. Syst. (2016)Google Scholar
  107. 107.
    S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The spinnaker project. Proc. IEEE 102, 652–665 (2014)CrossRefGoogle Scholar
  108. 108.
    T. Pfeil et al., Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 7, 11 (2013)CrossRefGoogle Scholar
  109. 109.
    G. Indiveri, F. Corradi, N. Qiao, Neuromorphic architectures for spiking deep neural networks. in IEEE International Electron Devices Meeting (IEDM), 4–2 (2015)Google Scholar
  110. 110.
    M. Hu, et al., Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. in Proceedings of DAC, vol. 53 (2016)Google Scholar
  111. 111.
    L. Gao, F. Alibart, D. B. Strukov, Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices. in IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC), 88–93 (2012)Google Scholar
  112. 112.
    S. Datta, N. Shukla, M. Cotter, A. Parihar, A. Raychowdhury, Neuro inspired computing with coupled relaxation oscillators. in 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), 1–6 (2014)Google Scholar
  113. 113.
    M.A. Zidan et al., A family of memristor-based reactance-less oscillators. Int. J. Circuit Theory Appl. 42, 1103–1122 (2014)CrossRefGoogle Scholar
  114. 114.
    I. Vourkas, D. Stathis, G. Sirakoulis, Massively parallel analog computing: Ariadne’s thread was made of memristors. IEEE Trans. Emerging Top. Comput. (2015)
  115. 115.
    Y.V. Pershin, M. Di Ventra, Solving mazes with memristors: A massively parallel approach. Phys. Rev. E 84, 046703 (2011)CrossRefGoogle Scholar
  116. 116.
    Z. Ye, S.H.M. Wu, T. Prodromakis, in Memristor Networks. Computing shortest paths in 2d and 3d memristive networks (Springer, 2014), pp. 537–552Google Scholar
  117. 117.
    A. Alaghi, J.P. Hayes, Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. (TECS) 12, 92 (2013)Google Scholar
  118. 118.
    P. Knag, W. Lu, Z. Zhang, A native stochastic computing architecture enabled by memristors. IEEE Trans. Nanotechnol. 13, 283–293 (2014)CrossRefGoogle Scholar
  119. 119.
    S. Balatti, S. Ambrogio, Z. Wang, D. Ielmini, True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerging Sel. Top. Circuits Syst. 5, 214–221 (2015)CrossRefGoogle Scholar
  120. 120.
    C.-Y. Huang, W.C. Shen, Y.-H. Tseng, Y.-C. King, C.-J. Lin, A contact-resistive random-access-memory-based true random number generator. IEEE Electron Device Lett. 33, 1108–1110 (2012)CrossRefGoogle Scholar
  121. 121.
    C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, Physical unclonable functions and applications: A tutorial. Proc. IEEE 102, 1126–1141 (2014)CrossRefGoogle Scholar
  122. 122.
    A. Chen, Utilizing the variability of resistive random access memory to implement reconfigurable physical unclonable functions. IEEE Electron Device Lett. 36, 138–140 (2015)CrossRefGoogle Scholar
  123. 123.
    R. Liu, H. Wu, Y. Pang, H. Qian, S. Yu, Experimental characterization of physical unclonable function based on 1 kb resistive random access memory arrays. IEEE Electron Device Lett. 36, 1380–1383 (2015)CrossRefGoogle Scholar
  124. 124.
    A. Chen, Comprehensive assessment of RRAM-based PUF for hardware security applications. in IEEE International Electron Devices Meeting (IEDM), 10–7 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical Engineering & Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Nanoelectronics Research Initiative (NRI)Semiconductor Device CorporationDurhamUSA
  3. 3.Institute of NeuroinformaticsUniversity of Zurich and ETH ZurichZurichSwitzerland

Personalised recommendations