Journal of Electroceramics

, Volume 39, Issue 1–4, pp 185–196 | Cite as

Volume Resistive Switching in metallic perovskite oxides driven by the Metal-Insulator Transition

  • Juan Carlos Gonzalez-Rosillo
  • Rafael Ortega-Hernandez
  • Júlia Jareño-Cerulla
  • Enrique Miranda
  • Jordi Suñe
  • Xavier Granados
  • Xavier Obradors
  • Anna Palau
  • Teresa PuigEmail author


In recent years Resistive Random Access Memory (RRAM) is emerging as the most promising candidate to substitute the present Flash Technology in the non-volatile memory market. RRAM are based on the Resistive Switching (RS) effect, where a change in the resistance of the material can be reversibly induced upon the application of an electric field. In this sense, strongly correlated complex oxides present unique intrinsic properties and extreme sensitivity to external perturbations, which make them suitable for the nanoelectronics of the future. In particular, metallic complex oxides displaying metal-insulator transition (MIT) are very attractive materials for applications and are barely explored as RS active elements. In this work, we analyze the RS behavior of different films belonging to three different families of metallic perovskites: La0.8Sr0.2MnO3, YBa2Cu3O7-δ and NdNiO3. We demonstrate that these mixed electronic-ionic conductors undergo a metal-insulator transition upon the application of an electric field, being able to transform the bulk volume. This volume RS is different in nature from interfacial or filamentary type and opens new possibilities of robust device design. As an example, we present a proof-of-principle result from a 3-Terminal configuration with multilevel memory states.


Resistive Switching perovskite oxides strongly correlated oxides R-RAM 



We acknowledge financial support from Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496), CONSOLIDER Excellence Network (MAT2015-68994-REDC), COACHSUPENERGY project (MAT2014-56063-C2-1-R, co-financed by the European Regional Development Fund), OXSWITCH project funded by Centro Superior de Investigaciones Científicas (CSIC) and from the Catalan Government with 2014-SGR-753 and Xarmae. We also acknowledge Dr. Jaume Gazquez and Mr. Bernat Munder for the TEM images. J.C.G.R. thanks Spanish Ministry of Economy for his FPI Spanish grant (BES-2012-053814). R.O. thanks Generalitat de Catalunya for the Grant through AGAUR FI-DGR program. JS acknowledges the support of the Generalitat de Catalunya under the ICREA ACADEMIA award.

Supplementary material

10832_2017_101_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1555 kb)


  1. 1.
    D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Rep. Prog. Phys. 75, 76502 (2012)CrossRefGoogle Scholar
  2. 2.
    C.Y. Lu, K.Y. Hsieh, R. Liu, Microelectron. Eng. 86, 283 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Fujisaki, Jap. J. Appl. Phys. 52, 40001 (2013)CrossRefGoogle Scholar
  4. 4.
    J.S. Meena, S.M. Sze, U. Chand, T.-Y. Tseng, Nanoscale Res. Lett. 9, 526 (2014)CrossRefGoogle Scholar
  5. 5.
    J.-M. Hu, Z. Li, L.-Q. Chen, C.-W. Nan, Nat. Commun. 2, 553 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, M. Samant, Proc. IEEE 91, 661 (2003)CrossRefGoogle Scholar
  7. 7.
    M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.-C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam, IBM J. Res. Dev. 52, 465 (2008)CrossRefGoogle Scholar
  9. 9.
    O. Auciello, J. F. Scott, R. Ramesh, Phys. Today 51(7), 22–27 (1998)Google Scholar
  10. 10.
    S. Nakamura, H. Ishiwara, MRS Bull. 29, 823 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Sawa, Mater. Today 11, 28 (2008)CrossRefGoogle Scholar
  12. 12.
    R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  14. 14.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13 (2013)CrossRefGoogle Scholar
  15. 15.
    D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)CrossRefGoogle Scholar
  16. 16.
    J.F. Gibbons, W.E. Beadle, Solid State Electron. 7, 785 (1964)CrossRefGoogle Scholar
  17. 17.
    J. Bin Yun, S. Kim, S. Seo, M.J. Lee, D.C. Kim, S.E. Ahn, Y. Park, J. Kim, H. Shin, Phys. Status Solidi Rapid Res. Lett. 1, 280 (2007)CrossRefGoogle Scholar
  18. 18.
    G.-S. Park, Y.-B.B. Kim, S.Y. Park, X.S. Li, S. Heo, M.-J. Lee, M. Chang, J.H. Kwon, M. Kim, U.-I. Chung, R. Dittmann, R. Waser, K. Kim, Nat. Commun. 4, 2382 (2013)Google Scholar
  19. 19.
    A. Herpers, C. Lenser, C. Park, F. Offi, F. Borgatti, G. Panaccione, S. Menzel, R. Waser, R. Dittmann, Adv. Mater. 26, 2730 (2014)CrossRefGoogle Scholar
  20. 20.
    H.S. Lee, H.H. Park, Appl. Phys. Lett. 107, 1 (2015)Google Scholar
  21. 21.
    H. Lee, S. Choi, H. Park, M. Rozenberg, Sci Rep 3, 1704 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Lenser, A. Koehl, I. Slipukhina, H. Du, M. Patt, V. Feyer, C.M. Schneider, M. Lezaic, R. Waser, R. Dittmann, Adv. Funct. Mater. 25, 6360 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)CrossRefGoogle Scholar
  24. 24.
    F. Messerschmitt, M. Kubicek, J.L.M. Rupp, Adv. Funct. Mater. 25, 5117 (2015)CrossRefGoogle Scholar
  25. 25.
    F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Adv. Funct. Mater. 24, 7448 (2014)CrossRefGoogle Scholar
  26. 26.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)CrossRefGoogle Scholar
  27. 27.
    J.J. Yang, I.H. Inoue, T. Mikolajick, C.S. Hwang, MRS Bull. 37, 131 (2012)CrossRefGoogle Scholar
  28. 28.
    C. Baeumer, C. Schmitz, A.H.H. Ramadan, H. Du, K. Skaja, V. Feyer, P. Müller, B. Arndt, C.-L. Jia, J. Mayer, R.A. De Souza, C. Michael Schneider, R. Waser, R. Dittmann, Nat. Commun. 6, 8610 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Hubbard, Proc. R. Soc. London A Math. Phys. Eng. Sci. 277, 237 (1964)CrossRefGoogle Scholar
  30. 30.
    N.F. Mott, Proc. Phys. Soc. Sect. A 62, 416 (1949)CrossRefGoogle Scholar
  31. 31.
    Y. Zhou, S. Ramanathan, Crit. Rev. Solid State Mater. Sci. 38, 286 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Medarde, J. Phys. Condens. Matter 9, 1679 (1997)CrossRefGoogle Scholar
  33. 33.
    X. Obradors, L.M. Paulius, M.B. Maple, J.B. Torrance, A.I. Nazzal, J. Fontcuberta, X. Granados, Phys. Rev. B 47, 353 (1993)CrossRefGoogle Scholar
  34. 34.
    K. Gupta, B. Mandal, P. Mahadevan, Phys. Rev. B 90, 125109 (2014)CrossRefGoogle Scholar
  35. 35.
    R.S. Dhaka, T. Das, N.C. Plumb, Z. Ristic, W. Kong, C.E. Matt, N. Xu, K. Dolui, E. Razzoli, M. Medarde, L. Patthey, M. Shi, M. Radović, J. Mesot, Phys. Rev. B 92, 35127 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Catalano, M. Gibert, V. Bisogni, F. He, R. Sutarto, M. Viret, P. Zubko, R. Scherwitzl, G.A. Sawatzky, T. Schmitt, J. Triscone, APL Mater. 3, 62506 (2015)CrossRefGoogle Scholar
  37. 37.
    Z. Yang, C. Ko, S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011)CrossRefGoogle Scholar
  38. 38.
    A. Urushibara, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51, 14103 (1995)CrossRefGoogle Scholar
  39. 39.
    C.C. Moreno, C. Munuera, S. Valencia, F. Kronast, X. Obradors, C. Ocal, Nano Lett. 10, 3828 (2010)CrossRefGoogle Scholar
  40. 40.
    R. Ortega-Hernandez, M. Coll, J. Gonzalez-Rosillo, A. Palau, X. Obradors, E. Miranda, T. Puig, J. Suñe, Microelectron. Eng. 147, 37 (2015)CrossRefGoogle Scholar
  41. 41.
    I.H. Inoue, M.J. Rozenberg, Adv. Funct. Mater. 18, 2289 (2008)CrossRefGoogle Scholar
  42. 42.
    P. Stoliar, L. Cario, E. Janod, B. Corraze, C. Guillot-Deudon, S. Salmon-Bourmand, V. Guiot, J. Tranchant, M. Rozenberg, Adv. Mater. 25, 3222 (2013)CrossRefGoogle Scholar
  43. 43.
    V. Dubost, T. Cren, C. Vaju, L. Cario, E. Janod, D. Roditchev, Nano Lett. 13, 3648 (2013)CrossRefGoogle Scholar
  44. 44.
    V. Guiot, L. Cario, E. Janod, B. Corraze, V.T. Phuoc, M. Rozenberg, P. Stoliar, T. Cren, D. Roditchev, Nat. Commun. 4, 1722 (2013)CrossRefGoogle Scholar
  45. 45.
    E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V.T. Phuoc, M.P. Besland, L. Cario, Adv. Funct. Mater. 25, 6287 (2015)CrossRefGoogle Scholar
  46. 46.
    A.M. Saranya, D. Pla, A. Morata, A. Cavallaro, J. Canales-Vázquez, J.A. Kilner, M. Burriel, A. Tarancõn, Adv. Energy Mater. 5, 1 (2015)CrossRefGoogle Scholar
  47. 47.
    S. P. Jiang, J. Mater. Sci. 43(21), 6799–6833 (2008)Google Scholar
  48. 48.
    Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, M. Tsuchiya, D.D. Fong, S. Ramanathan, Nature 534, 231 (2016)Google Scholar
  49. 49.
    W. Carrillo-Cabrera, H.-D. Wiemhöfer, W. Göpel, Solid State Ionics 32-33, Par, 1172 (1989)CrossRefGoogle Scholar
  50. 50.
    C. Acha, Phys. B Condens. Matter 404, 2746 (2009)CrossRefGoogle Scholar
  51. 51.
    C. Acha, M.J. Rozenberg, J. Phys. Condens. Matter 21, 45702 (2009)CrossRefGoogle Scholar
  52. 52.
    A. Schulman, C. Acha, Phys. B Condens. Matter 407, 3147 (2012)CrossRefGoogle Scholar
  53. 53.
    J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nat. Commun. 4, 2676 (2013)Google Scholar
  54. 54.
    J. Shi, Y. Zhou, S. Ramanathan, J. Shi, Nat. Commun. 5, 4860 (2014)CrossRefGoogle Scholar
  55. 55.
    J.-O. Krisponeit, C. Kalkert, B. Damaschke, V. Moshnyaga, K. Samwer, Phys. Rev. B 87, 121103 (2013)CrossRefGoogle Scholar
  56. 56.
    N. Ghenzi, M.J. Sánchez, F. Gomez-Marlasca, P. Levy, M.J. Rozenberg, J. Appl. Phys. 107(9), 093719, (2010)Google Scholar
  57. 57.
    C. Kalkert, J.-O. Krisponeit, M. Esseling, O.I. Lebedev, V. Moshnyaga, B. Damaschke, G. Van Tendeloo, K. Samwer, Appl. Phys. Lett. 99, 132512 (2011)CrossRefGoogle Scholar
  58. 58.
    C.W. Chong, M.J. Huang, H.C. Han, Y.K. Lin, J.M. Chiu, Y.F. Huang, H.J. Lin, T.W. Pi, J.G. Lin, L.C. Chen, K.H. Chen, Y.F. Chen, Appl. Phys. Lett. 103, 0 (2013)CrossRefGoogle Scholar
  59. 59.
    L. Peña, L. Garzón, R. Galceran, A. Pomar, B. Bozzo, Z. Konstantinovic, F. Sandiumenge, L. Balcells, C. Ocal, B. Martinez, J. Phys. Condens. Matter 26, 395010 (2014)CrossRefGoogle Scholar
  60. 60.
    L.J. Van der Pauw, Philips Tech. Rev. 13, 1 (1958)Google Scholar
  61. 61.
    J.B. Kemper, O. Vafek, J.B. Betts, F.F. Balakirev, W.N. Hardy, R. Liang, D.A. Bonn, G.S. Boebinger, Nat. Phys. 12, 47 (2016)CrossRefGoogle Scholar
  62. 62.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)CrossRefGoogle Scholar
  63. 63.
    A.J. Hauser, E. Mikheev, N.E. Moreno, T.A. Cain, J. Hwang, J.Y. Zhang, S. Stemmer, Appl. Phys. Lett. 103, 0 (2013)CrossRefGoogle Scholar
  64. 64.
    S.D. Ha, R. Jaramillo, D.M. Silevitch, F. Schoofs, K. Kerman, J.D. Baniecki, S. Ramanathan, Phys. Rev. B - Condens. Matter Mater. Phys. 87, 1 (2013)CrossRefGoogle Scholar
  65. 65.
    B. Wuyts, V.V. Moshchalkov, Y. Bruynseraede, Phys. Rev. B 53, 9418 (1996)CrossRefGoogle Scholar
  66. 66.
    D.N. Mueller, M.L. Machala, H. Bluhm, W.C. Chueh, Nat. Commun. 6, 6097 (2015)CrossRefGoogle Scholar
  67. 67.
    Y.A. Mastrikov, R. Merkle, E. Heifets, E.A. Kotomin, J. Maier, J. Phys. Chem. C 114, 3017 (2010)CrossRefGoogle Scholar
  68. 68.
    M.M. Kuklja, E.A. Kotomin, R. Merkle, Y.A. Mastrikov, J. Maier, Phys. Chem. Chem. Phys. 15, 5443 (2013)CrossRefGoogle Scholar
  69. 69.
    C.H. Ahn, J.-M. Triscone, J. Mannhart, Nature 424, 1015 (2003)CrossRefGoogle Scholar
  70. 70.
    D. Sacchetto, G. De Micheli, Y. Leblebici, Proc. IEEE 100, 2008 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017
Corrected publication August/2017

Authors and Affiliations

  • Juan Carlos Gonzalez-Rosillo
    • 1
  • Rafael Ortega-Hernandez
    • 1
    • 2
  • Júlia Jareño-Cerulla
    • 1
  • Enrique Miranda
    • 2
  • Jordi Suñe
    • 2
  • Xavier Granados
    • 1
  • Xavier Obradors
    • 1
  • Anna Palau
    • 1
  • Teresa Puig
    • 1
    Email author
  1. 1.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain
  2. 2.Departament d’Enginyeria ElectrònicaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations