Advertisement

Journal of Electroceramics

, Volume 40, Issue 1, pp 72–77 | Cite as

N-doping effects on the oxygen sensing of TiO2 films

  • C. Buono
  • M. Desimone
  • F. Schipani
  • C. M. Aldao
  • C. I. Vignatti
  • C. I. N. Morgade
  • G. F. Cabeza
  • T. F. Garetto
Article
  • 108 Downloads

Abstract

Gas sensors based on Titanium dioxide films have been a subject of interest due to its high sensitivity and low cost. The sensing mechanism of this type of sensors is based on the conduction mechanism, which is governed by the potential barriers formed at the inter-grains of the polycrystalline structure. The shape of these potential barriers strongly depends on the characteristics of the material, and then it is expected that a doping aggregation will affect significantly the conductivity and thus the sensitivity of the sensor. In this work, we study the effect in the oxygen sensitivity of titanium dioxide films due to N-doping. We developed a model in order to explain our experimental results based on the fact that, for the particle size of our titanium dioxide samples, grains are completely depleted of carriers.

Keywords

Polycrystalline semiconductors Electrical conduction Intergranular barriers Tunneling 

Notes

Acknowledgements

This work was partially supported by the National Council for Scientific and Technical Research (CONICET) of Argentina and the National University of Mar del Plata (Argentina).

References

  1. 1.
    M.J. Madou, R. Morrison, Chemical Sensing with Solid State Devices (Academic, San Diego, 1989)Google Scholar
  2. 2.
    N. Yamazoe, Sensors Actuators B Chem. 108, 2–14 (2005)CrossRefGoogle Scholar
  3. 3.
    N. Barsan, D. Koziej, U. Weimar, Sensors Actuators B Chem. 121, 18–35 (2007)CrossRefGoogle Scholar
  4. 4.
    I.-D. Kim, A. Rothschild, B.H. Lee, D.Y. Kim, S.M. Jo, H.L. Tuller, Nano Lett. 6, 2009–2013 (2006)CrossRefGoogle Scholar
  5. 5.
    N. Barsan, U. Weimar, J. Electroceram. 7, 143–167 (2001)CrossRefGoogle Scholar
  6. 6.
    M.A. Ponce, C. Malagu, M.C. Carotta, G. Martinelli, C.M. Aldao, J. Appl. Phys. 104, 054907 (2008)CrossRefGoogle Scholar
  7. 7.
    M.A. Ponce, M.S. Castro, C.M. Aldao, J. Mater. Sci.: Mater. Electron. 20, 25–32 (2009)Google Scholar
  8. 8.
    W. Gopel, K. Schierbaum, Sensors Actuators B Chem. 26, 1–12 (1995)CrossRefGoogle Scholar
  9. 9.
    A. Werner, A. Roos, Sol. Energy Mater. Sol. Cells 91, 609–615 (2007)CrossRefGoogle Scholar
  10. 10.
    B. O’Regan, M. Grätzel, Nature 353, 737–739 (1991)CrossRefGoogle Scholar
  11. 11.
    C. Burda, Y. Lou, X. Chen, A.C. Samia, J. Stout, L. Gole, Nano Lett. 3, 1049–1051 (2003)CrossRefGoogle Scholar
  12. 12.
    H. Tang, K. Prasad, R. Sanjinés, F. Levy, Sensors Actuators B Chem. 26–27, 71–75 (1995)CrossRefGoogle Scholar
  13. 13.
    E.F. Osborn, J. Am. Ceram. Soc. 36, 147–151 (1953)CrossRefGoogle Scholar
  14. 14.
    S.J. Smith, R. Stevens, S. Liu, G. Li, A. Navrotsky, J. Boerio-Goates, B.F. Woodfield, Am. Mineral. 94, 236–243 (2009)CrossRefGoogle Scholar
  15. 15.
    M. Epifani, A. Helwig, J. Arbiol, R. Díaz, L. Francioso, P. Siciliano, G. Mueller, J.R. Morante, Sensors Actuators B Chem. 130, 599–608 (2008)CrossRefGoogle Scholar
  16. 16.
    L.A. Harris, J. Electrochem. Soc. 127, 2657–2662 (1980)CrossRefGoogle Scholar
  17. 17.
    E. Traversa, M.L. Di Vona, S. Licoccia, M. Sacerdoti, M.C. Carotta, M. Gallana, G. Martinelli, J. Sol-Gel Sci. Technol. 19, 193–196 (2000)CrossRefGoogle Scholar
  18. 18.
    I.-D. Kim, A. Rothschild, D.-J. Yang, H.L. Tuller, Sensors Actuators B Chem. 130, 9–13 (2008)CrossRefGoogle Scholar
  19. 19.
    B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.-K. Suh, Mater. Charact. 58, 680–684 (2007)CrossRefGoogle Scholar
  20. 20.
    M.R. Mohammadi, D.J. Fray, M.C. Cordero-Cabrera, Sensors Actuators B Chem. 124, 74–83 (2007)CrossRefGoogle Scholar
  21. 21.
    D. Mardare, N. Iftimie, D. Luca, J. Non-Cryst. Solids 354, 4396–4400 (2008)CrossRefGoogle Scholar
  22. 22.
    A. Al-Homoudi, J.S. Thakur, R. Naik, G.W. Auner, G. Newaz, Appl. Surf. Sci. 253, 8607–8614 (2007)CrossRefGoogle Scholar
  23. 23.
    L.D. Birkefeld, M.A. Azad, S.A. Akbar, J. Am. Ceram. Soc. 75, 2964–2968 (1992)CrossRefGoogle Scholar
  24. 24.
    A.M. Azad, L.B. Youdunan, S.A. Akbar, M.A. Alim, J. Am. Ceram. Soc. 77, 481–486 (1994)CrossRefGoogle Scholar
  25. 25.
    P.K. Dutta, A. Ginwalla, B. Hogg, B.R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, S. Akbar, J. Phys. Chem. B 103, 4412–4422 (1999)CrossRefGoogle Scholar
  26. 26.
    J. Wang, W. Zhu, S. Liu, J. Phys. Chem. C 111, 1010–1014 (2007)CrossRefGoogle Scholar
  27. 27.
    Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976–6982 (2007)CrossRefGoogle Scholar
  28. 28.
    W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yi, Q. Chen, J. Phys. D. Appl. Phys. 33, 912–916 (2000)CrossRefGoogle Scholar
  29. 29.
    A.L. Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Bartoriri, T. Mazza, P. Pisen, P. Midani, F.O. Ernst, K. Wegner, S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005)CrossRefGoogle Scholar
  30. 30.
    M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47–154 (2005)CrossRefGoogle Scholar
  31. 31.
    F. Schipani, M.A. Ponce, E. Joanni, F.J. Williams, C.M. Aldao, J. Appl. Phys. 116, 194502 (2014)CrossRefGoogle Scholar
  32. 32.
    Z.-W. Chen, C.-H. Shek, C.M. Lawrence Wu, J.K.L. Lai, Front. Mater. Sci. 7, 203 (2013)CrossRefGoogle Scholar
  33. 33.
    L. Zhou, R.C. Hoffmann, Z. Zhao, J. Bill, F. Aldinger, Thin Solid Films 516, 7661–7666 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Batzill, E. Morales, U. Diebold, Phys. Rev. Lett. 96, 26103 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • C. Buono
    • 1
  • M. Desimone
    • 1
  • F. Schipani
    • 1
  • C. M. Aldao
    • 1
  • C. I. Vignatti
    • 2
  • C. I. N. Morgade
    • 3
    • 4
  • G. F. Cabeza
    • 4
  • T. F. Garetto
    • 2
  1. 1.Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)Universidad Nacional de Mar del Plata-CONICETMar del PlataArgentina
  2. 2.Grupo de Investigaciones en Ciencia e Ingeniería Catalíticas (GICIC), INCAPE, UNL-CONICET, CCT CONICET Santa FeSanta FeArgentina
  3. 3.Universidad Tecnológica NacionalBahía BlancaArgentina
  4. 4.Grupo de Materiales y Sistemas Catalíticos, Instituto de Física del Sur (IFISUR), Departamento de FísicaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina

Personalised recommendations