Skip to main content
Log in

Reset switching statistics of TaOx-based Memristor

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In this work, the resistance switching mechanism of Reset process has been suggested through the statistics of the reset voltage and the reset current, which is consistent with the thermal-activated dissolution model. Furthermore, the variability nature of the switching parameters has been analyzed by screening the statistical data into different resistance ranges and the distributions are shown to be compatible with a Weibull distribution. Finally, we propose criteria for selecting high-performance memristor materials based on the statistical results and the temperature evolution of the conductive filament (CF) in three different memristor materials (TaOx, HfO2 and NiO). The high-performance materials tend to exhibit a higher Weibull slope and there are no variation and extra heat generated in the CF before the reset event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L.O. Chua, IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. L.O. Chua, S.M. Kang, Proc. IEEE 64, 209–223 (1976)

    Article  Google Scholar 

  3. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80–83 (2008)

    Article  Google Scholar 

  4. T. Prodromakis, C. Toumazou, L. Chua, Nat. Mater. 11, 478–481 (2012)

    Article  Google Scholar 

  5. L.O. Chua, Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011)

    Article  Google Scholar 

  6. R. Waser, M. Aono, Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  7. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429–433 (2008)

    Article  Google Scholar 

  8. A. Sawa, Mater. Today 11, 28–36 (2008)

    Article  Google Scholar 

  9. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  10. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Proc. IEEE 100, 1951–1970 (2012)

    Article  Google Scholar 

  11. H. Wu, X. Li, M. Wu, F. Huang, IEEE Electron Device Lett. 35, 39–41 (2014)

    Article  Google Scholar 

  12. B.J. Choi, A.C. Torrezan, J.P. Strachan, P.G. Kotula, A.J. Lohn, M.J. Marinella, Z. Li, R.S. Williams, J.J. Yang, Adv. Funct. Mater. 26, 5290–5296 (2016)

    Article  Google Scholar 

  13. I. Valov, R. Waser, J. Jameson, M. Kozicki, Nanotechnology 22, 254003 (2011)

    Article  Google Scholar 

  14. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.J. Yang, Nat. Mater. 16, 101–108 (2017)

    Article  Google Scholar 

  15. C. Wu, T.W. Kim, T. Guo, F. Li, D.U. Lee, J.J. Yang, Adv. Mater. (2016). doi:10.1002/adma.201602890

  16. A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K. Adepalli, B. Yildiz, R. Waser, I. Valov, Nat. Nanotechnol. 11, 67–74 (2016)

    Article  Google Scholar 

  17. H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang, Q. Wu, M. Barnell, J.J. Yang, H.L. Xin, Q. Xia, Sci. Rep. 6, 28525 (2016)

    Article  Google Scholar 

  18. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, D.H.J. Van, F. Lentz, R. Waser, Nat. Commun. 4, 1771 (2013)

    Article  Google Scholar 

  19. Z. Wang, H. Jiang, J.M. Hyung, P. Lin, A. Ribbe, Q. Xia, J.J. Yang, Nano 8, 14023–14030 (2016)

    Google Scholar 

  20. Y. Zhang, H. Wu, M. Wu, N. Deng, Z. Yu, J. Zhang, H. Qian, Appl. Phys. Lett. 104, 103507 (2014)

    Article  Google Scholar 

  21. Q. Xia, M.D. Pickett, J.J. Yang, X. Li, W. Wu, G.M. Ribeiro, R.S. Williams, Adv. Funct. Mater. 21, 2660–2665, 2011

  22. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, I. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, in IEDM Tech. Dig. (2008), pp. 1–4

  23. J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G.M. Ribeiro, R.S. Williams, Appl. Phys. Lett. 97, 232102 (2010)

    Article  Google Scholar 

  24. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, K. Kim, Nat. Mater. 10, 625–630 (2011)

    Article  Google Scholar 

  25. F. Miao, J.P. Strachan, J.J. Yang, M.X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Adv. Mater. 23, 5633–5640 (2011)

    Article  Google Scholar 

  26. J.P. Strachan, A.C. Torrezan, F. Miao, M.D. Pickett, J.J. Yang, W. Yi, G. Medeiros-Ribeiro, R.S. Williams, IEEE Trans. Electron Dev. 60, 2194–2202 (2013)

    Article  Google Scholar 

  27. F. Miao, W. Yi, I. Goldfarb, J.J. Yang, M.X. Zhang, M.D. Pickett, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, ACS Nano 6, 2312–2318 (2012)

    Article  Google Scholar 

  28. J.J. Yang, J.P. Strachan, F. Miao, M.X. Zhang, M. Pickett, W. Yi, D. Ohlberg, G. Medeiros-Ribeiro, R. Williams, Appl. Phys. A Mater. Sci. Process. 102, 785–789 (2011)

    Article  Google Scholar 

  29. J.J. Yang, R.S. Williams, ACM J. Emerg. Technol. Comput. Syst. 9, 1–20 (2013)

    Google Scholar 

  30. U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego, M. Fanciulli, in IEDM Tech. Dig. (2007), pp. 775–778

  31. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, IEEE Trans. Electron Dev. 56, 193–200 (2009)

    Article  Google Scholar 

  32. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, IEEE Trans. Electron Dev 56, 186–192 (2009)

    Article  Google Scholar 

  33. D. Ielmini, C. Cagli, F. Nardi, Nanotechnology 22, 254022–254033 (2011)

    Article  Google Scholar 

  34. N. W. Ashcroft, N. D. Mermin, vol. 46 (Saunders, Philadelphia, 1976)

  35. W. Yi, S.E. Savel'ev, G.M. Ribeiro, F. Miao, M.-X. Zhang, J.J. Yang, A.M. Bratkovsky, R.S. Williams, Nat. Commun. 7, 11142 (2016)

    Article  Google Scholar 

  36. P.R. Mickel, A.J. Lohn, C.D. James, M.J. Marinella, Adv. Mater. 26, 4486–4490 (2014)

    Article  Google Scholar 

  37. S. Long, X. Lian, T. Ye, C. Cagli, L. Perniola, E. Miranda, M. Liu, J. Suñé, IEEE Electron Device Lett. 34, 623–625 (2013)

    Article  Google Scholar 

  38. S. Long, X. Lian, C. Cagli, L. Perniola, E. Miranda, M. Liu, J. Suñé, IEEE Electron Device Lett. 8, 999–1001 (2013)

    Article  Google Scholar 

  39. S. Long, X. Lian, C. Cagli, L. Perniola, H. Lv, Q. Liu, L. Li, Z. Huo, E. Miranda, D. Jiménez, M. Liu, J. Suñé, in IEEE International Reliability Physics Symposium (IRPS). (2013), pp. 5A.6.1–5A.6.8

  40. S. Long, C. Cagli, D. Ielmini, M. Liu, J. Suñé, J. Appl. Phys. 111, 074508 (2012)

    Article  Google Scholar 

  41. S. Long, C. Cagli, D. Ielmini, M. Liu, J. Suñé, IEEE Electron. Device Lett. 32, 1570–1572 (2011)

    Article  Google Scholar 

  42. J. Suñé, IEEE Electron. Device Lett. 22, 296–298 (2001)

    Article  Google Scholar 

  43. S. Long, L. Perniola, C. Cagli, J. Buckley, X. Lian, E. Miranda, F. Pan, M. Liu, J. Suñé, Sci. Rep. 3, 5329–5343 (2013)

    Google Scholar 

  44. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Nanotechnology 22, 485203–485209 (2011)

    Article  Google Scholar 

  45. H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, M.-J. Tsai, in IEDM Tech. Dig. (2010), pp. 460–463

  46. Y.Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G.S. Kar, A. Fantini, G. Groeseneken, D.J. Wouters, M. Jurczak, IEEE Trans. Electron Dev. 60, 1114–1121 (2013)

    Article  Google Scholar 

  47. I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, J. T. Moon, in IEDM Tech. Dig. (2005), pp. 587–590

  48. Y.C. Huang, P.Y. Chen, T.S. Chin, R.S. Liu, C.Y. Huang, C.H. Lai, Appl. Phys. Lett 101, 153106–153106-4 (2012)

    Article  Google Scholar 

  49. M.J. Lee, Y. Park, D.S. Suh, E.H. Lee, S. Seo, D.C. Kim, R. Jung, B.S. Kang, S.E. Ahn, C.B. Lee, D.H. Seo, Y.K. Cha, I.K. Yoo, J.S. Kim, B.H. Park, Adv. Mater. 19, 3919–3923 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Basic Research Program of China (2015CB921600, 2013CBA01603), the National Natural Science Foundation of China (11374142, 61574076), the Postdoctoral Program of Jiangsu Province (1501031B), the Natural Science Foundation of Jiangsu Province (BK20130544, BK20140017, BK20150055), the Specialized Research Fund for the Doctoral Program of Higher Education (20130091120040), and Fundamental Research Funds for the Central Universities and the Collaborative Innovation Center of Advanced Microstructures.

Author information

Authors and Affiliations

Authors

Contributions

X.J.L performed the experiments, did the statistics and analyzed the data. X.J.L, F.M and J.J.Y co-wrote the paper with all authors contributing to the discussion and preparation of the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to J.Joshua Yang or Feng Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Wang, M., Yan, P. et al. Reset switching statistics of TaOx-based Memristor. J Electroceram 39, 132–136 (2017). https://doi.org/10.1007/s10832-017-0094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0094-x

Keywords

Navigation