Nanoscale characterization of resistive switching using advanced conductive atomic force microscopy based setups

Abstract

Conductive atomic force microscopy (CAFM) is a powerful tool for studying resistive switching at the nanoscale. By applying sequences of I-V curves and biased scans the write, erase and read operations in a dielectric can be simulated in situ. CAFM can be used to monitor the inhomogeneities produced by a previous device level stress, for example conductive filaments formation and disruption. In this case the removal of the top electrode may be a problem. One attractive solution is to etch the top electrode using the CAFM tip for dielectric surface analysis, and one may also etch the dielectric to observe the shape of the filament in three dimensions. The genuine combination of electrical and mechanical stresses via CAFM tip can lead to additional setups, such as pressure modulated conductance microscopy. In the future, new experiments and CAFM related techniques may be designed to deep into the knowledge of resistive switching.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    M.P. Murrell, M.E. Welland, S.J. O’Shea, T.M.H. Wong, J.R. Barnes, A.W. McKinnon, Appl. Phys. Lett. 62, 786 (1993)

    Article  Google Scholar 

  2. 2.

    S.J. O’Shea, R.M. Atta, M.P. Murrell, M.E. Welland, Conducting atomic-force microscopy study of silicon dioxide breakdown. Journal Vauum Science and Technology B 13, 1945 (1995)

    Article  Google Scholar 

  3. 3.

    T.G. Ruskell, R.K. Workman, D. Chen, D. Sarid, Appl. Phys. Lett. 68, 93 (1996)

    Article  Google Scholar 

  4. 4.

    M. Lanza, Conductive Atomic Force Microscopy: Applications in Nanomaterials, (Wiley-VCH, Weinheim, 2017)

  5. 5.

    M. Lanza, M. Porti, M. Nafría, X. Aymerich, A. Sebastiani, G. Ghidini, A. Vedda, M. Fasoli, IEEE Trans. Device Mater. Reliab. 9, 529 (2009)

    Article  Google Scholar 

  6. 6.

    M. Lanza, M. Porti, M. Nafría, X. Aymerich, G. Ghidini, A. Sebastiani, Microelectron. Reliab. 49, 1188 (2009)

    Article  Google Scholar 

  7. 7.

    W. Frammelsberger, G. Benstetter, J. Kiely, R. Stamp, Appl. Surf. Sci. 253, 3615 (2007)

    Article  Google Scholar 

  8. 8.

    M. Lanza, M. Porti, M. Nafría, X. Aymerich, E. Whittaker, B. Hamilton, Microelectron. Reliab. 50, 1312 (2010)

    Article  Google Scholar 

  9. 9.

    U. Celano, T. Hantschel, G. Giammaria, R.C. Chintala, T. Conard, H. Bender, W. Vandervorst, J. Appl. Phys. 117, 214305 (2015)

    Article  Google Scholar 

  10. 10.

    M. Lanza, M. Porti, M. Nafría, X. Aymerich, G. Benstetter, E. Lodermeier, H. Ranzinger, G. Jaschke, S. Teichert, L. Wilde, P. Michalowski, Microelectron. Eng. 86, 1921 (2009)

    Article  Google Scholar 

  11. 11.

    M. Lanza, M. Porti, M. Nafría, X. Aymerich, G. Benstetter, E. Lodermeier, H. Ranzinger, G. Jaschke, S. Teichert, L. Wilde, P. Michalowski, IEEE Trans. Nanotechnol. 10, 344 (2011)

    Article  Google Scholar 

  12. 12.

    M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, T. Prodromakis, J. Phys. Chem. C 119, 11958 (2015)

    Article  Google Scholar 

  13. 13.

    R. Muenstermann, T. Menke, R. Dittmann, S. Mi, C.L. Jia, D. Park, J. Mayer, J. Appl. Phys. 108, 124504 (2010)

    Article  Google Scholar 

  14. 14.

    O. Pirrotta, L. Larcher, M. Lanza, A. Padovani, M. Porti, M. Nafria, G. Bersuker, J. Appl. Phys. 114, 134503 (2013)

    Article  Google Scholar 

  15. 15.

    M. Nafría, R. Rodríguez, M. Porti, J. Martín-Martínez, M. Lanza, X. Aymerich, IEEE Int. Electron Devices Meet. 6(3), 1 (2011)

    Google Scholar 

  16. 16.

    V. Iglesias, M. Lanza, K. Zhang, A. Bayerl, M. Porti, M. Nafría, X. Aymerich, G. Benstetter, Z.Y. Shen, G. Bersuker, Appl. Phys. Lett. 99, 103510 (2011)

    Article  Google Scholar 

  17. 17.

    Y. Ji, C. Pan, M. Zhang, S. Long, X. Lian, F. Miao, F. Hui, Y. Shi, L. Larcher, E. Wu, M. Lanza, Appl. Phys. Lett. 108, 012905 (2016)

    Article  Google Scholar 

  18. 18.

    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)

    Article  Google Scholar 

  19. 19.

    F. Nardi, D. Deleruyelle, S. Spiga, C. Muller, B. Bouteille, D. Ielmini, J. Appl, Phys. 112, 64310 (2012)

    Google Scholar 

  20. 20.

    J.Y. Son, Y.-H. Shin, Appl. Phys. Lett. 92, 222106 (2008)

    Article  Google Scholar 

  21. 21.

    X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.-W. Li, Adv. Mater. 24, 3941 (2012)

    Article  Google Scholar 

  22. 22.

    U. Celano, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, W. Vandervorst, Appl. Phys. Lett. 102, 121602 (2013)

    Article  Google Scholar 

  23. 23.

    M. Lanza, Materials 7, 2155 (2014)

    Article  Google Scholar 

  24. 24.

    R. Annunziata, P. Zuliani, M. Borghi, G. De Sandre, L. Scotti, C. Prelini, M. Tosi, I. Tortorelli, F. Pellizzer, IEEE Int. Electron Dev. Meet. 1 (2009)

  25. 25.

    K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura, H. Yoda, Y. Watanabe, IEEE Int. Solid-State Circuits Conference Digest of Technical Papers (2010)

  26. 26.

    G. Bersuker, D. C. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, IEEE Int. Electron Dev. Meet. (2010)

  27. 27.

    M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafría, X. Aymerich, Appl. Phys. Lett. 101, 193502 (2012)

    Article  Google Scholar 

  28. 28.

    M. Lanza, K. Zhang, M. Porti, M. Nafria, Z.Y. Shen, L.F. Liu, J.F. Kang, D. Gilmer, G. Bersuker, Appl. Phys. Lett. 100, 123508 (2012)

    Article  Google Scholar 

  29. 29.

    B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, J. Appl. Phys. 98, 033715 (2005)

    Article  Google Scholar 

  30. 30.

    J.Y. Son, Y.H. Shin, Appl. Phys. Lett. 92, 2106 (2008)

    Google Scholar 

  31. 31.

    S.H. Seo, J.S. Hwang, J.M. Yang, W.J. Hwang, J.Y. Song, W.J. Lee, Thin Solid Films 14, 546 (2013)

    Google Scholar 

  32. 32.

    V.V.N. Obreja, C. Codreanu, D. Poenar, O. Buiu, Microelectron. Reliab. 51, 536 (2011)

    Article  Google Scholar 

  33. 33.

    S.S. Hwang, S.Y. Jung, Y.C. Joo, J. Appl. Phys. 104, 044511 (2008)

    Article  Google Scholar 

  34. 34.

    N. Raghavan, K.L. Pey, K. Shubhakar, M. Bosman, IEEE Electron Device Lett. 32, 78 (2011)

    Article  Google Scholar 

  35. 35.

    A. Bayerl, M. Porti, J. Martin-Martínez, M. Lanza, R. Rodriguez, V. Velayudhan, E. Amat, M. Nafria, X. Aymerich, International Reliability Physics Symposium, 5D.4.1 (2013)

  36. 36.

    M. Lanza, M. Porti, M. Nafría, G. Benstetter, W. Frammelsberger, H. Ranzinger, E. Lodermeier, G. Jaschke, Microelectron. Reliab. 47, 1424 (2007)

    Article  Google Scholar 

  37. 37.

    Y. Shi, Y. Ji, F. Hui, M. Nafria, M. Porti, G. Bersuker, M. Lanza, Adv. Electron. Mater. 1-2, 1400058 (2015)

    Article  Google Scholar 

  38. 38.

    Y. Shi, Y. Ji, F. Hui, V. Iglesias, M. Porti, M. Nafria, E. Miranda, G. Bersuker, M Lanza. ECS Trans. 64, 19 (2014)

    Article  Google Scholar 

  39. 39.

    P. Zhou, H.B. Lv, M. Yin, L. Tang, Y.L. Song, T.A. Tang, Y.Y. Lin, A. Bao, A. Wu, S. Cai, J. Vac. Sci. Technol. B 26, 1030 (2008)

    Article  Google Scholar 

  40. 40.

    C. Yoshida, K. Kentaro, Y. Takahiro, S. Yoshihiro, Appl. Phys. Lett. 93, 042106 (2008)

    Article  Google Scholar 

  41. 41.

    J. Petry, W. Vandervorst, O. Richard, T. Conard, P. DeWolf, V. Kaushik, A. Delabie, S. van Elshocht, Materials Research Society Symposia 811, 203 (2004)

    Google Scholar 

  42. 42.

    M. Lanza, A. Bayerl, T. Gao, M. Porti, M. Nafria, G. Jing, Y. Zhang, Z. Liu, H. Duan, Adv. Mater. 25, 1440 (2013)

    Article  Google Scholar 

  43. 43.

    L. Aguilera, M. Lanza, A. Bayerl, M. Porti, M. Nafría, X. Aymerich, J. Vac. Sci. Technol., B 27, 360 (2009)

    Article  Google Scholar 

  44. 44.

    L. Aguilera, M. Lanza, M. Porti, J. Grifoll, M. Nafría, X. Aymerich, Rev. Sci. Instrum. 79, 073701 (2008)

    Article  Google Scholar 

  45. 45.

    R. Garcia, R.V. Martinez, J. Martinez, Chem. Soc. Rev. 35, 29 (2006)

    Article  Google Scholar 

  46. 46.

    M. Lanza, M. Porti, M. Nafría, X. Aymerich, E. Wittaker, B. Hamilton, Rev. Sci. Instrum. 81, 106110 (2010)

    Article  Google Scholar 

  47. 47.

    Rocky Mountain Nanotechnology, http://rmnano.com/

  48. 48.

    Bruker AFM probes, https://www.brukerafmprobes.com/Product.aspx?ProductID=3820

  49. 49.

    F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X.-R. Li, J.-J. Xu, M. Lanza, Nano 8, 8466 (2016)

    Google Scholar 

  50. 50.

    M. Lanza, T. Gao, Z. Yin, Y. Zhang, Z. Liu, Y. Tong, Z. Shen, H. Duan, Nano 5, 10816 (2013)

    Google Scholar 

  51. 51.

    W.H. Wang, R.X. Dong, X.L. Yan, B. Yang, X.L. An, IEEE Trans. Nanotechnol. 11, 1135 (2012)

    Article  Google Scholar 

  52. 52.

    M.J. Lee, C.B. Lee, D.S. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, K. Kim, Nat. Mater. 10, 625 (2011)

    Article  Google Scholar 

  53. 53.

    J. Park, W. Lee, M. Choe, S. Jung, M. Son, S. Kim, S. Park, J. Shin, D. Lee, M. Siddik, J. Woo, G. Choi, E. Cha, T. Lee, H. Hwang, IEEE Int. Electron Devices Meet. 3(7), 1 (2011)

    Google Scholar 

  54. 54.

    B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger, Nanotechnology 23, 495707 (2012)

    Article  Google Scholar 

  55. 55.

    M.H. Lee, C.S. Hwang, Nano 3, 490 (2011)

    Google Scholar 

  56. 56.

    G.-S. Park, Y.B. Kim, S.Y. Park, X.S. Li, S. Heo, M.-J. Lee, M. Chang, J.H. Kwon, M. Kim, U.-I. Chung, R. Dittmann, Nat. Commun. 4, 2382 (2013)

    Google Scholar 

  57. 57.

    C. Lenser, M. Patt, S. Menzel, A. Köhl, C. Wiemann, C.M. Schneider, R. Waser, R. Dittmann, Adv. Funct. Mater. 24, 4466 (2014)

    Article  Google Scholar 

  58. 58.

    Y. Yang, W.D. Lu, IEEE Trans. Nanotechnol. 15, 465 (2016)

    Article  Google Scholar 

  59. 59.

    W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nano Lett. 15, 3983 (2015)

    Article  Google Scholar 

  60. 60.

    H. Lv, X. Xu, P. Sun, H. Liu, Q. Luo, Q. Liu, W. Banerjee, H. Sun, S. Long, L. Li, M. Liu, Sci. Rep. 5, 13311 (2015)

    Article  Google Scholar 

  61. 61.

    R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, F. Kronast, C.M. Schneider, R. Waser, Proc. IEEE 100, 1979 (2012)

    Article  Google Scholar 

  62. 62.

    U. Celano, L. Goux, A. Belmonte, A. Schulze, K. Opsomer, C. Detavernier, O. Richard, H. Bender, M. Jurczark, W. Vandervorst, IEDM Tech. Dig. 21(6), 1 (2013)

    Google Scholar 

  63. 63.

    U. Celano, L. Goux, A. Belmonte, G. Giammaria, K. Opsomer, C. Detavernier, O. Richard, H. Bender, F. Irrera, M. Jurzak, W. Vandervorst, IEDM Tech. Dig. IEEE 14(1), 1 (2014)

    Google Scholar 

  64. 64.

    T. Hantschel, P. Niedermann, T. Trenkler, W. Vandervorst, Appl. Phys. Lett. 76, 1603 (2000)

    Article  Google Scholar 

  65. 65.

    U. Celano, Metrology and physical mechanisms in new generation ionic devices (Springer International Publishing, Cham, 2016)

    Google Scholar 

  66. 66.

    U. Celano, L. Goux, K. Opsomer, M. Iapichino, A. Belmonte, A. Franquet, I. Hoflijk, C. Detavernier, M. Jurczak, W. Vandervorst, Microelectron. Eng. 120, 67 (2014)

    Article  Google Scholar 

  67. 67.

    M. Buckwell, L. Montesi, S. Hudziak, A. Mehonic, A.J. Kenyon, Nano 7, 18030 (2015)

    Google Scholar 

  68. 68.

    Y.Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, N. Raghavan, S. Clima, L. Zhang, A. Belmonte, A. Redolfi, G. Groeseneken, D.J. Wouters, M. Jurczak, IEDM Tech. Dig. 10(1), 1 (2013)

    Google Scholar 

  69. 69.

    J. Hou, B. Rouxel, W. Qin, S.S. Nonnenmann, D.A. Bonnell, Nanotechnology 24(39), 395703 (2013)

    Article  Google Scholar 

  70. 70.

    U. Celano, W. Vandervorst, Integr. Reliab. Work. Final Rep. (IIRW), 2014 I.E. Int. 1 (2014)

  71. 71.

    L. Goux, I. Valov, Phys. Status Solidi Appl. Mater. Sci. 288, 274 (2015)

    Google Scholar 

  72. 72.

    U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detarvenier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Nano Lett. 14, 2401 (2014)

    Article  Google Scholar 

  73. 73.

    U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Nano Lett. 15, 7970 (2015)

    Article  Google Scholar 

  74. 74.

    B. Govoreanu, G.S. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, M. Jurczak, IEDM Tech. Dig. 31(6), 1 (2011)

  75. 75.

    U. Celano, G. Giammaria, L. Goux, A. Belmonte, M. Jurczak, W. Vandervorst, Nano 8, 13915 (2016)

    Google Scholar 

  76. 76.

    U. Celano, L. Goux, A. Belmonte, K. Opsomer, R. Degraeve, C. Detavernier, M. Jurczak, W. Vandervorst, J. Phys. Chem. Lett. 6, 1919 (2015)

    Article  Google Scholar 

  77. 77.

    A. Belmonte, U. Celano, R. Degraeve, A. Fantini, A. Redolfi, W. Vandervorst, M. Houssa, M. Jurczak, L. Goux, IEEE Electron Device Lett. 36, 775 (2015)

    Article  Google Scholar 

  78. 78.

    F. Miao, J.P. Strachan, J.J. Yang, M.X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Memristor. Adv. Mater. 23, 5633 (2001)

    Article  Google Scholar 

  79. 79.

    C.N. Lau, D.R. Stewart, R.S. Williams, M. Bockrath, Nano Lett. 4, 569 (2004)

    Article  Google Scholar 

  80. 80.

    F. Miao, D. Ohlberg, D.R. Stewart, R.S. Williams, C.N. Lau, Phys. Rev. Lett. 101, 016802 (2008)

    Article  Google Scholar 

  81. 81.

    F. Miao, J.J. Yang, J.P. Strachan, D. Stewart, R.S. Williams, C.N. Lau, Appl. Phys. Lett. 95, 113503 (2009)

    Article  Google Scholar 

  82. 82.

    F. Miao, D.A.A. Ohlberg, R.S. Williams, C.N. Lau, Appl. Phys. A Mater. Sci. Process. 102, 943 (2011)

    Article  Google Scholar 

  83. 83.

    J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20, 215201 (2009)

    Article  Google Scholar 

  84. 84.

    J.M. Krans, C.J. Muller, I.K. Yanson, T.C.M. Govaert, R. Hesper, J. M. Phys. Rev. B 48, 14721 (1993)

    Article  Google Scholar 

  85. 85.

    E. M. Lifshitz, L. D. Landau, Theory of Elasticity, 3rd edn. (Butterworth-Heinemann, London, 1959), Vol. 7.

Download references

Acknowledgements

M. L. acknowledges support from the Young 1000 Global Talent Recruitment Program of the Ministry of Education of China, the National Natural Science Foundation of China (grants no. 61502326, 41550110223, 11661131002), the Jiangsu Government (grant no. BK20150343), the Ministry of Finance of China (grant no. SX21400213) and the Young 973 National Program of the Chinese Ministry of Science and Technology (grant no. 2015CB932700). The Collaborative Innovation Center of Suzhou Nano Science & Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and the Priority Academic Program Development of Jiangsu Higher Education Institutions are also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mario Lanza.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lanza, M., Celano, U. & Miao, F. Nanoscale characterization of resistive switching using advanced conductive atomic force microscopy based setups. J Electroceram 39, 94–108 (2017). https://doi.org/10.1007/s10832-017-0082-1

Download citation

Keywords

  • Electrical characterization
  • Conductive atomic force microscopy
  • Resistive switching
  • Scapel SPM
  • Pressure modulated conductance microscopy