Journal of Electroceramics

, Volume 39, Issue 1–4, pp 94–108 | Cite as

Nanoscale characterization of resistive switching using advanced conductive atomic force microscopy based setups

  • Mario LanzaEmail author
  • Umberto Celano
  • Feng Miao


Conductive atomic force microscopy (CAFM) is a powerful tool for studying resistive switching at the nanoscale. By applying sequences of I-V curves and biased scans the write, erase and read operations in a dielectric can be simulated in situ. CAFM can be used to monitor the inhomogeneities produced by a previous device level stress, for example conductive filaments formation and disruption. In this case the removal of the top electrode may be a problem. One attractive solution is to etch the top electrode using the CAFM tip for dielectric surface analysis, and one may also etch the dielectric to observe the shape of the filament in three dimensions. The genuine combination of electrical and mechanical stresses via CAFM tip can lead to additional setups, such as pressure modulated conductance microscopy. In the future, new experiments and CAFM related techniques may be designed to deep into the knowledge of resistive switching.


Electrical characterization Conductive atomic force microscopy Resistive switching Scapel SPM Pressure modulated conductance microscopy 



M. L. acknowledges support from the Young 1000 Global Talent Recruitment Program of the Ministry of Education of China, the National Natural Science Foundation of China (grants no. 61502326, 41550110223, 11661131002), the Jiangsu Government (grant no. BK20150343), the Ministry of Finance of China (grant no. SX21400213) and the Young 973 National Program of the Chinese Ministry of Science and Technology (grant no. 2015CB932700). The Collaborative Innovation Center of Suzhou Nano Science & Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices and the Priority Academic Program Development of Jiangsu Higher Education Institutions are also acknowledged.


  1. 1.
    M.P. Murrell, M.E. Welland, S.J. O’Shea, T.M.H. Wong, J.R. Barnes, A.W. McKinnon, Appl. Phys. Lett. 62, 786 (1993)CrossRefGoogle Scholar
  2. 2.
    S.J. O’Shea, R.M. Atta, M.P. Murrell, M.E. Welland, Conducting atomic-force microscopy study of silicon dioxide breakdown. Journal Vauum Science and Technology B 13, 1945 (1995)CrossRefGoogle Scholar
  3. 3.
    T.G. Ruskell, R.K. Workman, D. Chen, D. Sarid, Appl. Phys. Lett. 68, 93 (1996)CrossRefGoogle Scholar
  4. 4.
    M. Lanza, Conductive Atomic Force Microscopy: Applications in Nanomaterials, (Wiley-VCH, Weinheim, 2017)Google Scholar
  5. 5.
    M. Lanza, M. Porti, M. Nafría, X. Aymerich, A. Sebastiani, G. Ghidini, A. Vedda, M. Fasoli, IEEE Trans. Device Mater. Reliab. 9, 529 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Lanza, M. Porti, M. Nafría, X. Aymerich, G. Ghidini, A. Sebastiani, Microelectron. Reliab. 49, 1188 (2009)CrossRefGoogle Scholar
  7. 7.
    W. Frammelsberger, G. Benstetter, J. Kiely, R. Stamp, Appl. Surf. Sci. 253, 3615 (2007)CrossRefGoogle Scholar
  8. 8.
    M. Lanza, M. Porti, M. Nafría, X. Aymerich, E. Whittaker, B. Hamilton, Microelectron. Reliab. 50, 1312 (2010)CrossRefGoogle Scholar
  9. 9.
    U. Celano, T. Hantschel, G. Giammaria, R.C. Chintala, T. Conard, H. Bender, W. Vandervorst, J. Appl. Phys. 117, 214305 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Lanza, M. Porti, M. Nafría, X. Aymerich, G. Benstetter, E. Lodermeier, H. Ranzinger, G. Jaschke, S. Teichert, L. Wilde, P. Michalowski, Microelectron. Eng. 86, 1921 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Lanza, M. Porti, M. Nafría, X. Aymerich, G. Benstetter, E. Lodermeier, H. Ranzinger, G. Jaschke, S. Teichert, L. Wilde, P. Michalowski, IEEE Trans. Nanotechnol. 10, 344 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb, I. Gupta, T. Prodromakis, J. Phys. Chem. C 119, 11958 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Muenstermann, T. Menke, R. Dittmann, S. Mi, C.L. Jia, D. Park, J. Mayer, J. Appl. Phys. 108, 124504 (2010)CrossRefGoogle Scholar
  14. 14.
    O. Pirrotta, L. Larcher, M. Lanza, A. Padovani, M. Porti, M. Nafria, G. Bersuker, J. Appl. Phys. 114, 134503 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Nafría, R. Rodríguez, M. Porti, J. Martín-Martínez, M. Lanza, X. Aymerich, IEEE Int. Electron Devices Meet. 6(3), 1 (2011)Google Scholar
  16. 16.
    V. Iglesias, M. Lanza, K. Zhang, A. Bayerl, M. Porti, M. Nafría, X. Aymerich, G. Benstetter, Z.Y. Shen, G. Bersuker, Appl. Phys. Lett. 99, 103510 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Ji, C. Pan, M. Zhang, S. Long, X. Lian, F. Miao, F. Hui, Y. Shi, L. Larcher, E. Wu, M. Lanza, Appl. Phys. Lett. 108, 012905 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Nat. Mater. 5, 312 (2006)CrossRefGoogle Scholar
  19. 19.
    F. Nardi, D. Deleruyelle, S. Spiga, C. Muller, B. Bouteille, D. Ielmini, J. Appl, Phys. 112, 64310 (2012)Google Scholar
  20. 20.
    J.Y. Son, Y.-H. Shin, Appl. Phys. Lett. 92, 222106 (2008)CrossRefGoogle Scholar
  21. 21.
    X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.-W. Li, Adv. Mater. 24, 3941 (2012)CrossRefGoogle Scholar
  22. 22.
    U. Celano, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, W. Vandervorst, Appl. Phys. Lett. 102, 121602 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Lanza, Materials 7, 2155 (2014)CrossRefGoogle Scholar
  24. 24.
    R. Annunziata, P. Zuliani, M. Borghi, G. De Sandre, L. Scotti, C. Prelini, M. Tosi, I. Tortorelli, F. Pellizzer, IEEE Int. Electron Dev. Meet. 1 (2009)Google Scholar
  25. 25.
    K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama, M. Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura, H. Yoda, Y. Watanabe, IEEE Int. Solid-State Circuits Conference Digest of Technical Papers (2010)Google Scholar
  26. 26.
    G. Bersuker, D. C. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, IEEE Int. Electron Dev. Meet. (2010)Google Scholar
  27. 27.
    M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafría, X. Aymerich, Appl. Phys. Lett. 101, 193502 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Lanza, K. Zhang, M. Porti, M. Nafria, Z.Y. Shen, L.F. Liu, J.F. Kang, D. Gilmer, G. Bersuker, Appl. Phys. Lett. 100, 123508 (2012)CrossRefGoogle Scholar
  29. 29.
    B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, J. Appl. Phys. 98, 033715 (2005)CrossRefGoogle Scholar
  30. 30.
    J.Y. Son, Y.H. Shin, Appl. Phys. Lett. 92, 2106 (2008)Google Scholar
  31. 31.
    S.H. Seo, J.S. Hwang, J.M. Yang, W.J. Hwang, J.Y. Song, W.J. Lee, Thin Solid Films 14, 546 (2013)Google Scholar
  32. 32.
    V.V.N. Obreja, C. Codreanu, D. Poenar, O. Buiu, Microelectron. Reliab. 51, 536 (2011)CrossRefGoogle Scholar
  33. 33.
    S.S. Hwang, S.Y. Jung, Y.C. Joo, J. Appl. Phys. 104, 044511 (2008)CrossRefGoogle Scholar
  34. 34.
    N. Raghavan, K.L. Pey, K. Shubhakar, M. Bosman, IEEE Electron Device Lett. 32, 78 (2011)CrossRefGoogle Scholar
  35. 35.
    A. Bayerl, M. Porti, J. Martin-Martínez, M. Lanza, R. Rodriguez, V. Velayudhan, E. Amat, M. Nafria, X. Aymerich, International Reliability Physics Symposium, 5D.4.1 (2013)Google Scholar
  36. 36.
    M. Lanza, M. Porti, M. Nafría, G. Benstetter, W. Frammelsberger, H. Ranzinger, E. Lodermeier, G. Jaschke, Microelectron. Reliab. 47, 1424 (2007)CrossRefGoogle Scholar
  37. 37.
    Y. Shi, Y. Ji, F. Hui, M. Nafria, M. Porti, G. Bersuker, M. Lanza, Adv. Electron. Mater. 1-2, 1400058 (2015)CrossRefGoogle Scholar
  38. 38.
    Y. Shi, Y. Ji, F. Hui, V. Iglesias, M. Porti, M. Nafria, E. Miranda, G. Bersuker, M Lanza. ECS Trans. 64, 19 (2014)CrossRefGoogle Scholar
  39. 39.
    P. Zhou, H.B. Lv, M. Yin, L. Tang, Y.L. Song, T.A. Tang, Y.Y. Lin, A. Bao, A. Wu, S. Cai, J. Vac. Sci. Technol. B 26, 1030 (2008)CrossRefGoogle Scholar
  40. 40.
    C. Yoshida, K. Kentaro, Y. Takahiro, S. Yoshihiro, Appl. Phys. Lett. 93, 042106 (2008)CrossRefGoogle Scholar
  41. 41.
    J. Petry, W. Vandervorst, O. Richard, T. Conard, P. DeWolf, V. Kaushik, A. Delabie, S. van Elshocht, Materials Research Society Symposia 811, 203 (2004)Google Scholar
  42. 42.
    M. Lanza, A. Bayerl, T. Gao, M. Porti, M. Nafria, G. Jing, Y. Zhang, Z. Liu, H. Duan, Adv. Mater. 25, 1440 (2013)CrossRefGoogle Scholar
  43. 43.
    L. Aguilera, M. Lanza, A. Bayerl, M. Porti, M. Nafría, X. Aymerich, J. Vac. Sci. Technol., B 27, 360 (2009)CrossRefGoogle Scholar
  44. 44.
    L. Aguilera, M. Lanza, M. Porti, J. Grifoll, M. Nafría, X. Aymerich, Rev. Sci. Instrum. 79, 073701 (2008)CrossRefGoogle Scholar
  45. 45.
    R. Garcia, R.V. Martinez, J. Martinez, Chem. Soc. Rev. 35, 29 (2006)CrossRefGoogle Scholar
  46. 46.
    M. Lanza, M. Porti, M. Nafría, X. Aymerich, E. Wittaker, B. Hamilton, Rev. Sci. Instrum. 81, 106110 (2010)CrossRefGoogle Scholar
  47. 47.
    Rocky Mountain Nanotechnology,
  48. 48.
  49. 49.
    F. Hui, P. Vajha, Y. Shi, Y. Ji, H. Duan, A. Padovani, L. Larcher, X.-R. Li, J.-J. Xu, M. Lanza, Nano 8, 8466 (2016)Google Scholar
  50. 50.
    M. Lanza, T. Gao, Z. Yin, Y. Zhang, Z. Liu, Y. Tong, Z. Shen, H. Duan, Nano 5, 10816 (2013)Google Scholar
  51. 51.
    W.H. Wang, R.X. Dong, X.L. Yan, B. Yang, X.L. An, IEEE Trans. Nanotechnol. 11, 1135 (2012)CrossRefGoogle Scholar
  52. 52.
    M.J. Lee, C.B. Lee, D.S. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, K. Kim, Nat. Mater. 10, 625 (2011)CrossRefGoogle Scholar
  53. 53.
    J. Park, W. Lee, M. Choe, S. Jung, M. Son, S. Kim, S. Park, J. Shin, D. Lee, M. Siddik, J. Woo, G. Choi, E. Cha, T. Lee, H. Hwang, IEEE Int. Electron Devices Meet. 3(7), 1 (2011)Google Scholar
  54. 54.
    B. Singh, B.R. Mehta, D. Varandani, A.V. Savu, J. Brugger, Nanotechnology 23, 495707 (2012)CrossRefGoogle Scholar
  55. 55.
    M.H. Lee, C.S. Hwang, Nano 3, 490 (2011)Google Scholar
  56. 56.
    G.-S. Park, Y.B. Kim, S.Y. Park, X.S. Li, S. Heo, M.-J. Lee, M. Chang, J.H. Kwon, M. Kim, U.-I. Chung, R. Dittmann, Nat. Commun. 4, 2382 (2013)Google Scholar
  57. 57.
    C. Lenser, M. Patt, S. Menzel, A. Köhl, C. Wiemann, C.M. Schneider, R. Waser, R. Dittmann, Adv. Funct. Mater. 24, 4466 (2014)CrossRefGoogle Scholar
  58. 58.
    Y. Yang, W.D. Lu, IEEE Trans. Nanotechnol. 15, 465 (2016)CrossRefGoogle Scholar
  59. 59.
    W.A. Hubbard, A. Kerelsky, G. Jasmin, E.R. White, J. Lodico, M. Mecklenburg, B.C. Regan, Nano Lett. 15, 3983 (2015)CrossRefGoogle Scholar
  60. 60.
    H. Lv, X. Xu, P. Sun, H. Liu, Q. Luo, Q. Liu, W. Banerjee, H. Sun, S. Long, L. Li, M. Liu, Sci. Rep. 5, 13311 (2015)CrossRefGoogle Scholar
  61. 61.
    R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, F. Kronast, C.M. Schneider, R. Waser, Proc. IEEE 100, 1979 (2012)CrossRefGoogle Scholar
  62. 62.
    U. Celano, L. Goux, A. Belmonte, A. Schulze, K. Opsomer, C. Detavernier, O. Richard, H. Bender, M. Jurczark, W. Vandervorst, IEDM Tech. Dig. 21(6), 1 (2013)Google Scholar
  63. 63.
    U. Celano, L. Goux, A. Belmonte, G. Giammaria, K. Opsomer, C. Detavernier, O. Richard, H. Bender, F. Irrera, M. Jurzak, W. Vandervorst, IEDM Tech. Dig. IEEE 14(1), 1 (2014)Google Scholar
  64. 64.
    T. Hantschel, P. Niedermann, T. Trenkler, W. Vandervorst, Appl. Phys. Lett. 76, 1603 (2000)CrossRefGoogle Scholar
  65. 65.
    U. Celano, Metrology and physical mechanisms in new generation ionic devices (Springer International Publishing, Cham, 2016)CrossRefGoogle Scholar
  66. 66.
    U. Celano, L. Goux, K. Opsomer, M. Iapichino, A. Belmonte, A. Franquet, I. Hoflijk, C. Detavernier, M. Jurczak, W. Vandervorst, Microelectron. Eng. 120, 67 (2014)CrossRefGoogle Scholar
  67. 67.
    M. Buckwell, L. Montesi, S. Hudziak, A. Mehonic, A.J. Kenyon, Nano 7, 18030 (2015)Google Scholar
  68. 68.
    Y.Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, N. Raghavan, S. Clima, L. Zhang, A. Belmonte, A. Redolfi, G. Groeseneken, D.J. Wouters, M. Jurczak, IEDM Tech. Dig. 10(1), 1 (2013)Google Scholar
  69. 69.
    J. Hou, B. Rouxel, W. Qin, S.S. Nonnenmann, D.A. Bonnell, Nanotechnology 24(39), 395703 (2013)CrossRefGoogle Scholar
  70. 70.
    U. Celano, W. Vandervorst, Integr. Reliab. Work. Final Rep. (IIRW), 2014 I.E. Int. 1 (2014)Google Scholar
  71. 71.
    L. Goux, I. Valov, Phys. Status Solidi Appl. Mater. Sci. 288, 274 (2015)Google Scholar
  72. 72.
    U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detarvenier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Nano Lett. 14, 2401 (2014)CrossRefGoogle Scholar
  73. 73.
    U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Nano Lett. 15, 7970 (2015)CrossRefGoogle Scholar
  74. 74.
    B. Govoreanu, G.S. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, M. Jurczak, IEDM Tech. Dig. 31(6), 1 (2011)Google Scholar
  75. 75.
    U. Celano, G. Giammaria, L. Goux, A. Belmonte, M. Jurczak, W. Vandervorst, Nano 8, 13915 (2016)Google Scholar
  76. 76.
    U. Celano, L. Goux, A. Belmonte, K. Opsomer, R. Degraeve, C. Detavernier, M. Jurczak, W. Vandervorst, J. Phys. Chem. Lett. 6, 1919 (2015)CrossRefGoogle Scholar
  77. 77.
    A. Belmonte, U. Celano, R. Degraeve, A. Fantini, A. Redolfi, W. Vandervorst, M. Houssa, M. Jurczak, L. Goux, IEEE Electron Device Lett. 36, 775 (2015)CrossRefGoogle Scholar
  78. 78.
    F. Miao, J.P. Strachan, J.J. Yang, M.X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Memristor. Adv. Mater. 23, 5633 (2001)CrossRefGoogle Scholar
  79. 79.
    C.N. Lau, D.R. Stewart, R.S. Williams, M. Bockrath, Nano Lett. 4, 569 (2004)CrossRefGoogle Scholar
  80. 80.
    F. Miao, D. Ohlberg, D.R. Stewart, R.S. Williams, C.N. Lau, Phys. Rev. Lett. 101, 016802 (2008)CrossRefGoogle Scholar
  81. 81.
    F. Miao, J.J. Yang, J.P. Strachan, D. Stewart, R.S. Williams, C.N. Lau, Appl. Phys. Lett. 95, 113503 (2009)CrossRefGoogle Scholar
  82. 82.
    F. Miao, D.A.A. Ohlberg, R.S. Williams, C.N. Lau, Appl. Phys. A Mater. Sci. Process. 102, 943 (2011)CrossRefGoogle Scholar
  83. 83.
    J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20, 215201 (2009)CrossRefGoogle Scholar
  84. 84.
    J.M. Krans, C.J. Muller, I.K. Yanson, T.C.M. Govaert, R. Hesper, J. M. Phys. Rev. B 48, 14721 (1993)CrossRefGoogle Scholar
  85. 85.
    E. M. Lifshitz, L. D. Landau, Theory of Elasticity, 3rd edn. (Butterworth-Heinemann, London, 1959), Vol. 7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Functional Nano& Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & TechnologySoochow UniversitySuzhouChina
  2. 2.IMECHeverlee (Leuven)Belgium
  3. 3.National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations