Journal of Electroceramics

, Volume 38, Issue 2–4, pp 182–188 | Cite as

Boosting the electrochemical performance of Li-garnet based all-solid-state batteries with Li4Ti5O12 electrode: Routes to cheap and large scale ceramic processing

  • Jan van den Broek
  • Jennifer L. M. RuppEmail author
  • Semih AfyonEmail author


All-solid-state batteries based on fast Li+ conducting solid electrolytes such as Li7La3Zr2O12 (LLZO) give perspective on safe, non-inflammable, and temperature tolerant energy storage. Despite the promise, ceramic processing of whole battery assemblies reaching close to theoretical capacities and finding optimal strategies to process large-scale and low cost battery cells remains a challenge. Here, we tackle these issues and report on a solid-state battery cell composed of Li4Ti5O12 / c-Li6.25Al0.25La3Zr2O12 / metallic Li delivering capacities around 70–75 Ah/kg with reversible cycling at a rate of 8 A/kg (for 2.5–1.0 V, 95 °C). A key aspect towards the increase in capacity and Li+ transfer at the solid electrolyte-electrode interface is found to be the intimate embedding of grains and their connectivity, which can be implemented by the isostatic pressing of cells during their preparation. We suggest that simple adaption of ceramic processing, such as the applied pressure during processing, strongly alters the electrochemical performance by assuring good grain contacts at the electrolyte-electrode interface. Among the garnet-type all-solid-state ceramic battery assemblies in the field, considerably improved capacities and cycling properties are demonstrated for Li4Ti5O12 / c-Li6.25Al0.25La3Zr2O12 / metallic Li pressed cells, giving new perspectives on cheap ceramic processing and up-scalable garnet-based all-solid-state batteries.


Li-ion batteries Solid electrolyte Garnet Ionic conductivity Al doped Li7La3Zr2O12 Li4Ti5O12 Anode 



The authors thank Competence Center Energy and Mobility (CCEM) and Alstom for funding of the projects: Proposal 911 “All Solid State Li-Ion Batteries based on New Ceramic Li-Ion Electrolytes” and SP-ESC-A 03-14, ETH Zürich Foundation “All Solid State Li+ Batteries with high Thermal Operation Window”, respectively.

Supplementary material

10832_2017_79_MOESM1_ESM.docx (183 kb)
Supplementary Figure 1 (DOCX 183 kb)
10832_2017_79_MOESM2_ESM.docx (47 kb)
Supplementary Figure 2 (DOCX 47 kb)
10832_2017_79_MOESM3_ESM.docx (78 kb)
Supplementary Figure 3 (DOCX 77 kb)


  1. 1.
    Tarascon, J.M., M. Armand, Nature 414, 359–367 (2001)Google Scholar
  2. 2.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Nat. Mater. 11, 19–29 (2011)CrossRefGoogle Scholar
  3. 3.
    C.M. Hayner, X. Zhao, H.H. Kung, Annu. Rev. Chem. Biomol. Eng. 3, 445–471 (2012)CrossRefGoogle Scholar
  4. 4.
    X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8, 500–506 (2009)CrossRefGoogle Scholar
  5. 5.
    Afyon, S., D. Kundu, A.J. Darbandi, H. Hahn, F. Krumeich, R. Nesper, J. Mater. Chem. A 2, 18946–18951 (2014)Google Scholar
  6. 6.
    S. Afyon, M. Worle, R. Nesper, Angew. Chem. Int. Ed. Eng., 12541–12544 (2013)Google Scholar
  7. 7.
    Perea, A., K. Zaghib, D. Bélanger, J. Mater. Chem. A 3, 2776–2783 (2015)Google Scholar
  8. 8.
    Afyon, S., F. Krumeich, C. Mensing, A. Borgschulte, R. Nesper, Sci. Rep. 4, 7113 (2014)Google Scholar
  9. 9.
    P.L. Moss, R. Fu, G. Au, E.J. Plichta, Y. Xin, J.P. Zheng, J. Power Sources 124, 261–265 (2003)CrossRefGoogle Scholar
  10. 10.
    D. Larcher, J.M. Tarascon, Nat. Chem. 7, 19–29 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, W.-H. Zhong, ChemElectroChem 2, 22–36 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z.D. Deng, J. Xiao, J. Power Sources 286, 330–345 (2015)CrossRefGoogle Scholar
  13. 13.
    J.F.M. Oudenhoven, L. Baggetto, P.H.L. Notten, Adv. Energy Mater. 1, 10–33 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp. ACS Nano 9, 10737–10748 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp. Adv. Funct. Mater. 24, 7448–7460 (2014)CrossRefGoogle Scholar
  16. 16.
    Cao, C., Z.-B. Li, X.-L. Wang, X.-B. Zhao, W.-Q. Han, Front. Energy Res. 2, (2014)Google Scholar
  17. 17.
    P. Knauth, Solid State Ionics 180, 911–916 (2009)CrossRefGoogle Scholar
  18. 18.
    Janek, J., W.G. Zeier, Nat. Energy 1, 16141 (2016)Google Scholar
  19. 19.
    Murugan, R., V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. Engl. 46, 7778–81 (2007)Google Scholar
  20. 20.
    V. Thangadurai, S. Narayanan, D. Pinzaru, Chem. Soc. Rev. 43, 4714–4727 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Kotobuki, K. Kanamura, Y. Sato, T. Yoshida, J. Power Sources 196, 7750–7754 (2011)CrossRefGoogle Scholar
  22. 22.
    Kotobuki, M., H. Munakata, K. Kanamura, Y. Sato, T. Yoshida, J. Electrochem. Soc. 157, A1076 (2010)Google Scholar
  23. 23.
    C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Inorg. Chem. 50, 1089–1097 (2011)CrossRefGoogle Scholar
  24. 24.
    E. Rangasamy, J. Wolfenstine, J. Sakamoto. Solid State Ionics 206, 28–32 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Jin, P.J. McGinn, J. Power Sources 196, 8683–8687 (2011)CrossRefGoogle Scholar
  26. 26.
    W.G. Zeier, Dalton Trans. 43, 16133–16138 (2014)CrossRefGoogle Scholar
  27. 27.
    G.T. Hitz, E.D. Wachsman, V. Thangadurai, J. Electrochem, Soc. 160, A1248–A1255 (2013)Google Scholar
  28. 28.
    Bernuy-Lopez, C., W. Manalastas, J.M. Lopez del Amo, A. Aguadero, F. Aguesse, J.A. Kilner, Chem. Mater. 26, 3610–3617 (2014)Google Scholar
  29. 29.
    R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, K. Kanamura, Chem. Mater. 25, 425–430 (2013)CrossRefGoogle Scholar
  30. 30.
    D. Rettenwander, P. Blaha, R. Laskowski, K. Schwarz, P. Bottke, M. Wilkening, C.A. Geiger, G. Amthauer, Chem. Mater. 26, 2617–2623 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Buschmann, J. Dolle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. Janek, Phys. Chem. Chem. Phys. 13, 19378–19392 (2011)CrossRefGoogle Scholar
  32. 32.
    van den Broek, J., S. Afyon, J.L.M. Rupp, Adv. Energy Mater. 6, 1600736 (2016)Google Scholar
  33. 33.
    M. Rawlence, I. Garbayo, S. Buecheler, J.L. Rupp. Nano 8, 14746–14753 (2016)Google Scholar
  34. 34.
    S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, J. Power Sources 202, 332–335 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Ohta, T. Kobayashi, T. Asaoka, J. Power Sources 196, 3342–3345 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, J. Power Sources 238, 53–56 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, T. Asaoka, J. Power Sources 265, 40–44 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, Y. Iriyama, J. Power Sources 260, 292–298 (2014)CrossRefGoogle Scholar
  39. 39.
    C. Hansel, S. Afyon, J.L. Rupp. Nano 8, 18412–18420 (2016)Google Scholar
  40. 40.
    Afyon, S., F. Krumeich, J.L.M. Rupp, J. Mater. Chem. A. 3, 18636–18648 (2015)Google Scholar
  41. 41.
    Nowack, L.V., O. Waser, O. Yarema, V. Wood, RSC Adv. 3, 15618 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Electrochemical MaterialsETH ZurichZurichSwitzerland
  2. 2.Electrochemical Materials LabsMassachusetts Institute of Technologies (MIT)CambridgeUSA
  3. 3.Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH ZurichZurichSwitzerland

Personalised recommendations