Journal of Electroceramics

, Volume 38, Issue 1, pp 119–124 | Cite as

Electrically conductor black zirconia ceramic by SPS using graphene oxide

  • N. W. Solís
  • P. Peretyagin
  • R. Torrecillas
  • A. Fernández
  • J. L. Menéndez
  • C. Mallada
  • L. A. Díaz
  • J. S. Moya


The use of graphene as a component for developing electroconductive ceramic composites is being profusely studied. It is a very promising additive as it has excellent mechanical properties, high electrical and thermal conductivities, it is lightweight and its aspect ratio allows reaching percolation with low contents.

In the particular case of zirconia, preparation of black coloured materials remains a challenge while many high added value applications are waiting for a solution. Graphene appears as a candidate for fulfilling all these requirements. In this work, 3Y–TZP/rGO composites were prepared by Spark Plasma Sintering Zirconia-rGO mixtures. Simultaneous sintering and in-situ reduction of graphene oxide opens a very interesting technological route for preparing this type of materials. The influence of graphene content on the electrical, mechanical and optical properties was studied. An rGO content as low as 0,29 vol% allows nanostructured black zirconia to be obtained but it has to be increased up to 1 vol% in order to reach electrical resistivity values <100Ωcm, required for electrodischarge machining.


Zirconia composites Graphene Spark plasma sintering Black zirconia 



Authors would like to thank The Ministry of Education of the Russian Federation supported this work by contract №14.577.21.0089, unique identifier of contract RFMEFI57714X0089.


  1. 1.
    M.H. Bocanegra-Bernal, S.D. De La Torre, Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. J. Mater. Sci. 37(23), 4947–4971 (2002)CrossRefGoogle Scholar
  2. 2.
    R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel? Nature 258(5537), 703–704 (1975)CrossRefGoogle Scholar
  3. 3.
    J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 24(3), 289–298 (2008)CrossRefGoogle Scholar
  4. 4.
    D.A. Wright, J.S. Thorp, A. Aypar, H.P. Buckley, Optical absorption in current-blackened yttria-stabilized zirconia. J. Mater. Sci. 8(6), 876–882 (1973)CrossRefGoogle Scholar
  5. 5.
    J.S. Moya, R. Moreno, J. Requena, Soria, J, “black color in partially stabilized zirconia”. J. Am. Ceram. Soc. 71(11), 479–480 (1988)CrossRefGoogle Scholar
  6. 6.
    N. Wen, Y. Yi, W. Zhang, B. Deng, L. Shao, L. Dong, J. Tian, The color of Fe2O3 and Bi2O3 pigmented dental zirconia ceramic. Key Eng. Mater. 434-435, 582–585 (2010)CrossRefGoogle Scholar
  7. 7.
    K. Shah, J.A. Holloway, I.L. Denry, Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. Journal of Biomedical Materials Research - Part B Applied Biomaterials 87(2), 329–337 (2008)CrossRefGoogle Scholar
  8. 8.
    K.-H. Lee, Y.-S. Lee, J.-S. Park, B.-H. Lee, Preparation and characterization of black zirconia ceramics by black color spinel pigment. Journal of the Korean Ceramic Society 45(4), 214–219 (2008)CrossRefGoogle Scholar
  9. 9.
    E. Sani, L. Mercatelli, J.-L. Sans, D. Sciti, Optical properties of black and white ZrO2 for solar receiver applications, solar energy materials and solar cells (available online). October 22 (2014)Google Scholar
  10. 10.
    K.W. Schlichting, N.P. Padture, P.G. Klemens, Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 36(12), 3003–3010 (2001)CrossRefGoogle Scholar
  11. 11.
    B.P. Saha, R. Johnson, V. Jayaram, Comparative evaluation of thermal conductivity of zirconia solid and honeycomb structures. Experimental Heat Transfer 25(4), 267–281 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Song, X. Liu, J. Zhang, Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J. Am. Ceram. Soc. 89(2), 494–500 (2006)CrossRefGoogle Scholar
  13. 13.
    E.A. Olevsky, L. Froyen, Impact of thermal diffusion on densification during SPS. J. Am. Ceram. Soc. 92(SUPPL. 1), S122–S132 (January 2009)CrossRefGoogle Scholar
  14. 14.
    W. Li, L. Gao, Rapid sintering of nanocrystalline ZrO2(3Y) by spark plasma sintering. J. Eur. Ceram. Soc. 20(14–15), 2441–2445 (2000)CrossRefGoogle Scholar
  15. 15.
    Z. Xia, L. Riester, W.A. Curtin, H. Li, B.W. Sheldon, J. Liang, B. Chang, J.M. Xu, Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931–944 (2004)CrossRefGoogle Scholar
  16. 16.
    A. Duszová, J. Dusza, K. Tomášek, G. Blugan, J. Kuebler, Microstructure and properties of carbon nanotube/zirconia composite. J. Eur. Ceram. Soc. 28(5), 1023–1027 (2008)CrossRefGoogle Scholar
  17. 17.
    K. Hirota, Y. Takaura, M. Kato, Y. Miyamoto, Fabrication of carbon nanofiber(CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties. J. Mater. Sci. 42(13), 4792–4800 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Borrell, V.G. Rocha, R. Torrecillas, A. Fernández, Improvement of carbon nanofibers/ZrO2 composites properties with a zirconia nanocoating on carbon nanofibers by sol-gel method. J. Am. Ceram. Soc. 94(7), 2048–2052 (2011)CrossRefGoogle Scholar
  19. 19.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  20. 20.
    L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites. ACS Nano 5(4), 3182–3190 (2011)CrossRefGoogle Scholar
  21. 21.
    J.-H. Shin, S.-H. Hong, Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics. J. Eur. Ceram. Soc. 34(5), 1297–1302 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, A. Zurutuza, Graphene for tough and electroconductive alumina ceramics. J. Eur. Ceram. Soc. 33(15–16), 3201–3210 (2013)CrossRefGoogle Scholar
  23. 23.
    C. Botas, A.M. Pérez-Mas, P. Álvarez, R. Santamaría, M. Granda, C. Blanco, R. Menéndez, Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon 63, 576–578 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Moscow State University of Technology “STANKIN”MoscowRussian Federation
  2. 2.Nanomaterials and Nanotechnology Research Centre (CINN) (CSIC-Universidad de Oviedo)El EntregoSpain

Personalised recommendations