Journal of Electroceramics

, Volume 37, Issue 1–4, pp 163–169 | Cite as

Low field depoling phenomena in soft lead zirconate titanate ferroelectrics

  • Till Buchacher
  • Serban Lepadatu
  • Jeremy Allam
  • Robert Dorey
  • Markys G. Cain
Article

Abstract

Reduction in polarisation of ferroelectric materials due to repeated electrical cycling is a major problem in ferroelectric non-volatile memory devices. There is a large amount of data addressing this issue at high electric field strengths under bipolar loading conditions, however the effect of field cycling at low electric field strengths (< Ec) has not been fully investigated. This paper addresses the effects of repeated cycling of soft lead zirconate titanate using electrical pulses at fields well below the coercive field strength of the material. It is shown that this mode of loading diminishes the macroscopic polarisation and mechanical response of the material. The origins of this behaviour are found to be a statistical non-non-reversible switching processes that does not result in classical fatigue related mechanical microstructural damage or defect agglomeration and domain pinning. Instead the process is fully recoverable and attributed to local changes in switching energy and clustering of switched ferroelectric cells.

Keywords

Ferroelectrcis PZT Depoling Fatigue Fram Feram Lead-zirconate-titanate 

Notes

Acknowledgments

The financial support of the UK’s Engineering and Physical Sciences Research Council via the Centre for Doctoral Training in Micro and Nano Materials and Technology at the University of Surrey and the UK’s National Measurement Office is gratefully acknowledged.

Data availability

The authors confirm that all data underlying the findings are fully available without restriction. Details of the data and how to request access are available from: http://dx. doi.org/10.15126/surreydata.00811053

References

  1. 1.
    J. Burfoot, G. Taylor, Polar dielectrics and their applications (Macmillan, London, 1979)Google Scholar
  2. 2.
    S.-Y. Wu, A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices 21, 499–504 (1974)CrossRefGoogle Scholar
  3. 3.
    V. I. Petrovsky, A. S. Sigov, K. A. Vorotilov, Microelectronic applications of ferroelectric films. Integr. Ferroelectr. 3, 59–68 (1993)CrossRefGoogle Scholar
  4. 4.
    A. Fazio, Flash Memory Scaling. MRS Bull. 29 (2011)Google Scholar
  5. 5.
    K. A. Vorotilov, A. S. Sigov, Ferroelectric memory. Phys. Solid State 54, 894–899 (2012)CrossRefGoogle Scholar
  6. 6.
    J. F. Scott, C. A. P. De Araujo, Ferroelectric memories. Science 246, 1400–1405 (1989)CrossRefGoogle Scholar
  7. 7.
    J. F. Scott, Ferroelectric memories today, Ferroelectrics 236, 247–258 (2000).Google Scholar
  8. 8.
    J. Glaum, T. Granzow, J. Rödel, Evaluation of domain wall motion in bipolar fatigued lead-zirconate-titanate: A study on reversible and irreversible contributions. J. Appl. Phys. 107, 104119 (2010)CrossRefGoogle Scholar
  9. 9.
    N. Balke, T. Granzow, J. Rödel, Degradation of lead-zirconate-titanate ceramics under different dc loads. J. Appl. Phys. 105, 104105 (2009)CrossRefGoogle Scholar
  10. 10.
    D. Wang, Y. Fotinich, G. P. Carman, Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys. 83, 5342 (1998)CrossRefGoogle Scholar
  11. 11.
    H. Zhang, X. Chen, F. Cao, G. Wang, X. Dong, Z. Hu, T. Du, Charge-discharge properties of an antiferroelectric ceramics capacitor under different electric fields. J. Am. Ceram. Soc. 93, 4015–4017 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Müller, J. Schröder, D. C. Lupascu, Thermodynamic consistent modelling of defects and microstructures in ferroelectrics. GAMM-Mitteilungen 31, 133–150 (2008)CrossRefGoogle Scholar
  13. 13.
    C. Verdier, D. C. Lupascu, J. Rödel, Stability of defects in lead–zirconate–titanate after unipolar fatigue. Appl. Phys. Lett. 81, 2596 (2002)CrossRefGoogle Scholar
  14. 14.
    C. Verdier, D. C. Lupascu, J. Rödel, Unipolar fatigue of ferroelectric lead–zirconate–titanate. J. Eur. Ceram. Soc. 23, 1409–1415 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Nuffer, D. Lupascu, J. Rödel, Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 48, 3783–3794 (2000)CrossRefGoogle Scholar
  16. 16.
    U. Robels, G. Arlt, Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73, 3454–1993Google Scholar
  17. 17.
    M. H. Lente, J. A. Eiras, Domain reorientation anisotropy in ferroelectric polycrystals. J. Appl. Phys. 92, 2112 (2002)CrossRefGoogle Scholar
  18. 18.
    C. Verdier, D. C. Lupascu, H. von Seggern, J. Rödel, Effect of thermal annealing on switching dynamics of fatigued bulk lead zirconate titanate. Appl. Phys. Lett. 85, 3211 (2004)CrossRefGoogle Scholar
  19. 19.
    D. C. Lupascu, S. Fedosov, C. Verdier, J. Rödel, H. von Seggern, Stretched exponential relaxation in perovskite ferroelectrics after cyclic loading. J. Appl. Phys. 95, 1386 (2004)CrossRefGoogle Scholar
  20. 20.
    A. K. Tagantsev, I. Stolichnov, E. L. Colla, N. Setter, Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90, 1387 (2001)CrossRefGoogle Scholar
  21. 21.
    D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports Prog. Phys. 61 (1998)Google Scholar
  22. 22.
    J. F. Scott, Ferroelectric memories, 1st edn. (Springer-Verlag, Berlin Heidelberg, 2000)CrossRefGoogle Scholar
  23. 23.
    M. Vopsaroiu, J. Blackburn, M. G. Cain, and P. M. Weaver, Thermally activated switching kinetics in second-order phase transition ferroelectrics. Phys. Rev. B 82 (2010)Google Scholar
  24. 24.
    M. Vopsaroiu, P. M. Weaver, M. G. Cain, M. J. Reece, K. B. Chong, Polarization Dynamics and Non-Equilibrium Switching Processes in Ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1867–1873 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Levstik, M. Kosec, V. Bobnar, C. Filipič, J. Holc, H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, Switching kinetics in thick film and bulk lead lanthanum zirconate titanate ceramics. Jpn. J. Appl. Phys. 36 (1997)Google Scholar
  26. 26.
    V. Shur, E. Rumyantsev, S. Makarov, Kinetics of phase transformations in real finite systems: application to switching in ferroelectrics. J. Appl. Phys. 84, 445–1998Google Scholar
  27. 27.
    V. Y. Shur, E. L. Rumyantsev, S. D. Makarov, N. Y. Ponomarev, E. V. Nikolaeva, E. I. Shishkin, How to learn the domain kinetics from the switching current data. Integr. Ferroelectr. 27, 179–194 (1999)CrossRefGoogle Scholar
  28. 28.
    C. Jullian, J. F. Li, and D. Viehland, Polarization dynamics over broad time and field domains in modified ferroelectrics. Appl. Phys. Lett. 83 (2003)Google Scholar
  29. 29.
    S. V. Kalinin, A. Gruverman, Electrical and electromechanical phenomena at the Nanoscale (Springer, New York, 2007)Google Scholar
  30. 30.
    V. V. Shvartsman, A. L. Kholkin, C. Verdier, D. C. Lupascu, Fatigue-induced evolution of domain structure in ferroelectric lead zirconate titanate ceramics investigated by piezoresponse force microscopy. J. Appl. Phys. 98, 094109 (2005)CrossRefGoogle Scholar
  31. 31.
    V. V. Shvartsman, A. L. Kholkin, C. Verdier, Z. Yong, D. C. Lupascu, Investigation of fatigue mechanism in ferroelectric ceramic via piezoresponse force microscopy. J. Eur. Ceram. Soc. 25, 2559–2561 (2005)CrossRefGoogle Scholar
  32. 32.
    Q. Jiang, E. C. Subbarao, L. E. Cross, Grain size dependence of electric fatigue behavior of hot pressed PLZT ferroelectric ceramics. Acta Metall. Mater. 42, 3687–3694 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Physical Laboratory, Materials DivisionTeddingtonUK
  2. 2.EPSRC CDT in MiNMaTUniversity of SurreyGuildfordUK
  3. 3.Department of PhysicsUniversity of Central LancashirePrestonUK
  4. 4.Department of Physics, Advanced Technology InstituteUniversity of SurreyGuildfordUK
  5. 5.Centre for Engineering MaterialsUniversity of SurreyGuildfordUK
  6. 6.Electrosciences Ltd.FarnhamUK

Personalised recommendations