Skip to main content

Study on improving current generating time of piezoelectric energy harvesting system

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


This study combined a ceramic, metal alloy, and polymer in a piezoelectric energy harvesting system. The proper container film for curing the urethane rubber was determined to be a Si-coated polyester film. Furthermore, a technique was developed to embed a piezoelectric energy system in urethane rubber (soft and hard); the resulting effects on the output voltage generation of this system were experimentally determined. Comparing the uncoated and hard urethane rubber-coated systems, the latter system improved the energy generation time by a factor of 50 by restricting the recovery time of the metal alloy and storing applied mechanical energy in urethane rubber, providing more time for the piezoelectric ceramic to generate output current. From the LED lighting test results, the urethane rubber coating increased the usable voltage generating time from 0.05 s to 2.5 s. The improved generating time is useful for piezoelectric energy harvesting systems with irregular ambient energy sources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. S. Shinoda, T. Tai, H. Itoh, T. Sugou, H. Ichioka, S. Kimura, and Y. Nishioka: Japanese Journal of Applied Physics 49, 04DL21 (2010)

  2. M. S. Kim, S. C. Lee, S. W. Kim, S. J. Jeong, I. S. Kim, and J. Song: Japanese Journal of Applied Physics 52, 10MB25 (2013)

  3. N. E. duToit, B. L. Wardle, and S. G. Kim: Integrated Ferroelectrics 71, 121 (2005)

  4. S. Saadon and O. Sidek: Energy Conversion and Management 52, 500 (2011)

  5. L. Gu: Microelectronics Journal 42, 277 (2011)

  6. K. A. Cook-Chennault, N. Thambi, and A. M. Sastry: Smart Mater. Struct. 17, 043001 (2008)

  7. N. R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby, N. M. White and J. Ding:Sensors and Actuators A 132, 311 (2006)

  8. I. G. Mina, H. Kim, I. Kim, S.K. Park, K. Choi, T. N. Jackson, R. L. Tutwiler and S. T. McKinstry:IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 54, 2422 (2007)

  9. D. Choi, K.Y. Lee, K.H. Lee, E.S. Kim, T.S. Kim, S.Y. Lee, S.W. Kim, J.Y. Choi, J.M. Kim, Nanotechnology 21, 405503 (2010)

    Article  Google Scholar 

  10. M. Lee, C.Y. Chen, S. Wang, W.N. Cha, Y.J. Park, J.M. Kim, L.J. Chou, Z.L. Wang, Adv Mater 24, 1759 (2012)

    Article  Google Scholar 

  11. H. J. Jung, D. Song, S. K. Hong, Y. Song, and T. H. Sung: Jpn. J. Appl. Phys. 52 (2013) 10 MB03.

  12. M. Umeda, K. Nakamura, S. Ueha, Jpn J Appl Phys 35, 3267 (1996)

    Article  Google Scholar 

  13. M. C. Chure, L. Wu, K. K. Wu, C. C. Tung, J. S. Lin, and W. C. Ma: Ceramics international online (2013)

  14. M. Renaud, P. Fiorini, C. Hoof, Smart Mater Struct 16, 1125 (2007)

    Article  Google Scholar 

  15. J. Ji, F. Kong, L. He, Q. Guan, Z. Feng, Jpn J Appl Phys 49, 050204 (2010)

    Article  Google Scholar 

  16. S. Priya, C.T. Chen, D. Fye, J. Zahnd, Jpn J Appl Phys 44, L104 (2005)

    Article  Google Scholar 

  17. J.G. Rocha, L.M. Goncalves, P.F. Rocha, M.P. Silva, S. Lanceros-Mendez, IEEE Trans on Industrial Electron 57, 813 (2010)

    Article  Google Scholar 

  18. M.A. Karami, D.J. Inman, Appl Phys Lett 100, 042901 (2012)

    Article  Google Scholar 

  19. D. Song, H. Jang, S.B. Kim, C.H. Yang, M.S. Woo, S.K. Song, J. Lee, T.H. Sung, J Electroceram 31, 1 (2013)

    Article  Google Scholar 

  20. D. Song, H. Jang, S.B. Kim, T.H. Sung, J Electroceram 31, 35 (2013)

    Article  Google Scholar 

  21. D. Song, C.H. Yang, S.K. Hong, S.B. Kim, M.S. Woo, T.H. Sung, Ferroelectrics 449, 11 (2013)

    Article  Google Scholar 

  22. H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, H.F. Hormann, Jpn J Appl Phys 43, 6178 (2004)

    Article  Google Scholar 

  23. Z. Cao, J. Zhang, and H. Kuwano: Jpn. J. Appl. Phys. 50, 09ND15 (2011).

  24. T. Ogawa, R. Sugisawa, Y. Sakurada, H. Aoshima, M. Hikida, and H. Akaishi: Jpn. J. Appl. Phys. 52, 09KD14 (2013).

  25. C. Li, D. Hong, K.H. Kwon, J. Jeong, Jpn J Appl Phys 52, 050202 (2013)

    Article  Google Scholar 

  26. H. A. Sodano, D. J. Inman, and G. Park: Journal of Intelligent Material Systems and Structures. 16, 799 (2005)

  27. V. Bedekar, J. Oliver, and S. Priya: IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency control 57, 1513(2010)

  28. H.A. Sodano, G. Park, D.J. Leo, D.J. Inman, Smart Mater Struct 5050, 101 (2003)

    Google Scholar 

  29. S. Roundy, P.K. Wright, Smart Mater Struct 13, 1131 (2004)

    Article  Google Scholar 

  30. M. Umeda, K. Nakamura, S. Ueha, Jpn J Appl Phys 36, 3146 (1997)

    Article  Google Scholar 

  31. M.J. Guan, W.H. Liao, Ferroelectrics 386, 77 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tae Hyun Sung.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, D., Woo, M.S., Ahn, J.H. et al. Study on improving current generating time of piezoelectric energy harvesting system. J Electroceram 34, 207–215 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Piezoelectric energy harvesting
  • Urethane rubber
  • Electrical current