Dielectric and magnetic investigations of mixed cubic spinel Co-ferrites with controlled Mg content
- 242 Downloads
- 2 Citations
Abstract
High temperature frequency dependent dielectric properties, and room temperature magnetic behavior of mixed ferrites with controlled content of Mg in Co 1−xMg xFe 2O4(x=0.0,0.1,0.3,0.5,0.7,0.9 and 1.0) compositions are studied. Single phase spinel structure with cubic symmetry, lattice parameters, crystallite size, magnetic and dielectric properties were substantiated with x-ray diffractometer, transmission electron microscope, vibrating sample magnetometer and impedance analysis, respectively. Due to interfacial polarization, dielectric behavior of all the compositions shows dispersion with increase in frequency. The dielectric data was investigated by comparing the tangent loss and electric modulus for assigning the type and mechanism of dielectric relaxation. Temperature dependent dielectric constant, tangent loss and AC conductivity increase due to thermal activation of charge carriers and drift mobility. Furthermore, room temperature weak ferromagnetic behavior is observed due to the incorporation of non-magnetic Mg ions.
Keywords
Ferrites sol-gel Dielectric relaxation Stretching parameterNotes
Acknowledgments
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research group No. RG 1435-004.
References
- 1.A.S. Ponce, E.F. Chagas, R.J. Prado, C.H.M. Fernandes, A.J. Terezo, E.B. Saitovitch, J. Magn. Magn. Mater. 344, 182 (2013)CrossRefGoogle Scholar
- 2.R. Skomski, J. Phys-Condens. Mat. 15, R841 (2003)Google Scholar
- 3.Y.C. Mattei, O.P. Perez, O.N.C. Uwakweh, Mater. Chem. Phys. 132, 999 (2012)CrossRefGoogle Scholar
- 4.A.T. Ngo, M.P. Pileni, J. Phys. Chem. B. 105, 53 (2001)CrossRefGoogle Scholar
- 5.T.L. Templeton, A.S. Arrott, A.E. Curzon, M.A. Gee, X.Z. Li, Y. Yoshida, P. Schurer, J.L. LaCombe, J. Appl. Phys. 73, 6728 (1993)CrossRefGoogle Scholar
- 6.F. Nakagomi, S.W. da Silva, V.K. Garg, A.C. Oliveira, P.C. Morais, A. Jr. Franco, E.C.D. Lima, Vol. 101. (2007), p. 09M514Google Scholar
- 7.J. Gwak, A. Ayral, V. Rouessac, L. Cot, J.C. Grenier, J.H. Choy, Microporous Mesoporous Mater. 63, 177 (2003)CrossRefGoogle Scholar
- 8.T. Pannaparayil, S. Komarneni, K. Marande, M. Zadarko, J. Appl. Phys. 67, 5509 (1990)CrossRefGoogle Scholar
- 9.G.B. Ji, S.L. Tang, S.K. Ren, F.M. Zhang, B.X. Gu, Y.W. Du, J. Cryst. Growth. 270, 156 (2004)CrossRefGoogle Scholar
- 10.S.F. Yan, W. Ling, E.L. Zhou, J. Cryst. Growth. 273, 226 (2004)CrossRefGoogle Scholar
- 11.Z.X. Yue, J.H. Shan, X.W. Qi, Mater. Sci. Eng. B99, 217 (2003)Google Scholar
- 12.S. Arul Antory, K.S. Nagaraja, O.M. Sreedharan, J. Nucl. Mater. 295, 189 (2001)Google Scholar
- 13.Z.H. Zhou, J.M. Xue, J. Wang, H.S.O. Chan, T. Yu, Z.X. Shen, J. Appl. Phys. 91, 6015 (2002)CrossRefGoogle Scholar
- 14.L.A. Garcia-Cerda, V.A. Torres-Garcia, J.A. Matutes-Aquino, J.A. Matutes-Aquino, J. Alloy. Compd. 369, 148 (2004)CrossRefGoogle Scholar
- 15.F.X. Cheng, Z.Y. Peng, C.S. Liao, Z.G. Xu, S. Gao, C.H. Yan, Solid State Commun. 107, 471 (1998)CrossRefGoogle Scholar
- 16.J. Gwak, A. Ayral, V. Rouessac, L. Cot, J.C. Grenier, J.H. Choy, Microporous Mesoporous Mater. 63, 177 (2003)CrossRefGoogle Scholar
- 17.C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 122, 6263 (2000)CrossRefGoogle Scholar
- 18.V. Pillai, D.O. Shah, J. Magn. Mater. 163, 243 (1996)CrossRefGoogle Scholar
- 19.J.L.H. Chau, M.K. Hsu, C.C. Kao, Mater. Lett. 60, 947 (2006)CrossRefGoogle Scholar
- 20.H.M. Deng, J. Ding, Y. Shi, X.Y. Liu, J. Wang, J. Mater. Sci. 36, 3273 (2001)CrossRefGoogle Scholar
- 21.X.W. Qi, J. Zhou, Z.X. Yue, Z.L. Gui, L.T. Li, Ceram. Int. 29, 347 (2003)CrossRefGoogle Scholar
- 22.S.R. Naik, A.V. Salker, S.M. Yusuf, S.S. Meena, J. Alloy. Compd. 566, 54 (2013)CrossRefGoogle Scholar
- 23.B.H. Liu, J. Ding, Appl. Phys. Lett. 042506-1, 88 (2006)Google Scholar
- 24.M. Mali, A. Ataie, Scripta Materialia. 53, 1065 (2005)CrossRefGoogle Scholar
- 25.K.C. Patil, S.T. Aruna, S. Ekambaram, Curr. Opin. Solid St. M. 2, 158 (1997)CrossRefGoogle Scholar
- 26.G.X. Xi, L. Yang, M.X. Lu, Mater. Lett. 60, 3582 (2006)CrossRefGoogle Scholar
- 27.N. Singh, A. Agarwal, S. Sanghi, Curr. Appl. Phys. 11, 783 (2011)CrossRefGoogle Scholar
- 28.N. Singh, A. Agarwal, S. Sanghi, J. alloys Compd. 323, 486 (2011)Google Scholar
- 29.N. Singh, A. Agarwal, S. Sanghi, Physica B. 406, 687 (2011)CrossRefGoogle Scholar
- 30.M.A. Rehman, M.A. Malik, M. Akram, M. Kamran, K. Khan, A. Maqsood, J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1244-z.
- 31.A. Jr. Franco, F.C. e Silva, S. Vivien, J. Zapf, Appl. Phys. 111, 07B530 (2012)CrossRefGoogle Scholar
- 32.K. Verma, A. Kumar, D. Varshney, J. Alloys Comp. 526, 91 (2012)CrossRefGoogle Scholar
- 33.R.D. Shannon, Acta Cryst. A. 32, 751 (1976)CrossRefGoogle Scholar
- 34.M. Saleem, S.A. Siddiqi, S. Atiq, M.S. Anwar, S. Riaz, J. Chin. Chem. Phys. 23, 469 (2010)CrossRefGoogle Scholar
- 35.N. Sinakumar, A. Narayanasamy, C.N. Chinnasamy, B. Jeyadevan, J. Phys. 366201, 19 (2007)Google Scholar
- 36.M. Saleem, S.A. Siddiqi, S. Atiq, M.S. Anwar, Chin. Phys. Lett. 116103, 28 (2011)Google Scholar
- 37.K.W. Wagner, Ann. Phys. 40, 817 (1913)CrossRefGoogle Scholar
- 38.C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
- 39.J. Lin, G. C-Duan, G. W-Yin, W.N. Mei, R.W. Smith, J.R. Hardy, J. Chem. Phys. 119, 2812 (2003)Google Scholar
- 40.R. Gerhardt, J. Phys. Chem. Solids. 12, 1491 (1995)Google Scholar
- 41.R. Bergman, J. Appl. Phys. 88, 1356 (2000)CrossRefGoogle Scholar
- 42.N. Ponpandian, P. Balaya, A. Narayanasamy, J. Phys. Condens. Matter. 14, 3221 (2002)CrossRefGoogle Scholar
- 43.M.A. Hiti, J. Magn. Magn. Mater. 192, 305 (1999)CrossRefGoogle Scholar
- 44.D. Varshney, K. Verma, A. Kumar. J. Mol. Struct. 1006, 447 (2011)CrossRefGoogle Scholar
- 45.F. Huixia, C. Baiyi, Z. Deyi, Z. Jianqiang, T. Lin, J. Magn. Magn. Mater. 356, 68 (2014)CrossRefGoogle Scholar
- 46.M.A. Gabal, Y.M. Al Angari, H.M. Zaki, J. Magn. Mater. 363, 6 (2014)Google Scholar