Skip to main content
Log in

Structure and microwave dielectric properties of SrSmAlO4-Sr2TiO4 solid solutions

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The structure and microwave dielectric properties of Sr1+x Sm1-x Al1-x Ti x O4 ceramics were determined in the entire composition range of x = 0 ~ 1.0. The single phase solid solutions with K2NiF4 structure were obtained, and the Q × f value decreased with increasing x at first (up to 0.15) and then turned to increase and reached the maximum at x = 0.9. The dielectric constant ε r increased from 19.2 to 36.5 and the temperature coefficient of resonant frequency τ f ascended monotonously with increasing x. The variation tendency of Q × f value with x reflected the competition result of the interlayer polarization and the structure inhomogeneity. On the other hand, infrared (IR) reflectivity spectra were measured and fitted by means of classical oscillator model simulation. The intrinsic dielectric loss tangent extrapolated from IR range showed a similar changing trend with the measured ones. Moreover, the fitting results offered a detail inside view of the intrinsic factors and the variation of the dielectric loss could be well explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)

    Google Scholar 

  2. T.A. Vanderah, Science 298, 1182 (2002)

    Article  Google Scholar 

  3. X.M. Chen, Y. Xiao, X.Q. Liu, X. Hu, J. Electroceram. 10, 111 (2003)

    Article  Google Scholar 

  4. X.Q. Liu, X.M. Chen, Y. Xiao, Mater. Sci. Eng. B 103, 276 (2003)

    Article  Google Scholar 

  5. T. Shimada, K. Ichikawa, T. Minemura, T. Kolodiazhnyi, J. Breeze, N.M. Alford, G. Annino, J. Eur. Ceram. Soc. 30, 331 (2010)

    Article  Google Scholar 

  6. S. Wang, Y. Wang, C. Liu, W. Hsieh, Ceram. Int. 38, 1127 (2012)

    Article  Google Scholar 

  7. M.S. Fu, X.Q. Liu, X.M. Chen, Y.W. Zeng, J. Am. Ceram. Soc. 93, 787 (2010)

    Article  Google Scholar 

  8. A. Biswas, P.B. Rossen, J. Ravichandran, Y. Chu, Y. Lee, C. Yang, R. Ramesh, Y.H. Jeong, Appl. Phys. Lett. 102, 051603 (2013)

    Article  Google Scholar 

  9. A. Benabbas, Acta Cryst. B 62, 9 (2006)

    Article  Google Scholar 

  10. X.C. Fan, X.M. Chen, X.Q. Liu, Chem. Mater. 20, 4092 (2008)

    Article  Google Scholar 

  11. H.X. Yuan, X.M. Chen, M.M. Mao, J. Am. Ceram. Soc. 92, 2286 (2009)

    Article  Google Scholar 

  12. X.C. Fan, X.M. Chen, J. Am. Ceram. Soc. 92, 433 (2009)

    Article  Google Scholar 

  13. C.J. Fennie, K.M. Rabe, Phys. Rev. B 68, 184111 (2003)

    Article  Google Scholar 

  14. C.H. Lee, N.D. Orloff, T. Birol et al., Nature 502, 532 (2013)

    Article  Google Scholar 

  15. M.M. Mao, X.M. Chen, X.Q. Liu, J. Am. Ceram. Soc. 94, 3948 (2011)

    Article  Google Scholar 

  16. P.L. Wise, I.M. Reaney, W.E. Lee et al., J. Eur. Ceram. Soc. 21, 2629 (2001)

    Article  Google Scholar 

  17. P.L. Wise, I.M. Reaney, W.E. Lee et al., J. Eur. Ceram. Soc. 21, 1723 (2001)

    Article  Google Scholar 

  18. C. Zhang, L. Yi, L. Li, X.M. Chen, Int. J. Appl. Ceram. Technol. 10, E70 (2013)

    Article  Google Scholar 

  19. M.M. Mao, X.C. Fan, X.M. Chen, Int. J. Appl. Ceram. Technol. 7, E156 (2010)

    Article  Google Scholar 

  20. M.M. Mao, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 94, 2506 (2011)

    Article  Google Scholar 

  21. B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  22. X.C. Fan, X.M. Chen, X.Q. Liu, IEEE Trans. Microw. Theory Tech. 53, 3130 (2005)

    Article  Google Scholar 

  23. R.J. Cava, J. Mater. Chem. 11, 54 (2001)

    Article  Google Scholar 

  24. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  25. J.D. Breeze, J.M. Perkins, D.W. McComb, N.M. Alford, J. Am. Ceram. Soc. 92, 671 (2009)

    Article  Google Scholar 

  26. S. Rao, S.R. Kiran, V. Murthy, J. Am. Ceram. Soc. 95, 3532 (2012)

    Article  Google Scholar 

  27. A. Magrez, M. Cochet, O. Joubert, G. Louarn, M. Ganne, O. Chauvet, Chem. Mater. 13, 3893 (2001)

    Article  Google Scholar 

  28. D. Noujni, S. Kamba, A. Pashkin et al., Integr. Ferroelectr. 62, 199 (2004)

    Article  Google Scholar 

  29. S. Kamba, P. Samoukhina, F. Kadlec et al., J. Eur. Ceram. Soc. 23, 2639 (2003)

    Article  Google Scholar 

  30. J.J. Zhang, J.W. Zhai, X.J. Chou, J. Shao, X. Lu, X. Yao, Acta Mater. 57, 4491 (2009)

    Article  Google Scholar 

  31. R. Zurmuhlen, J. Petzelt, S. Kamba, V.V. Voitsekhovskii, E. Colla, N. Setter, J. Appl. Phys. 77, 5341 (1995)

    Article  Google Scholar 

  32. M.M. Mao, X.M. Chen, Int. J. Appl. Ceram. Technol. 8, 1023 (2011)

    Article  Google Scholar 

  33. A.E. Lavat, E.J. Baran, J. Alloy Compd. 368, 130 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by Chinese National Basic Research Program under grant number 2009CB623302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Yi, L., Liu, X.Q. et al. Structure and microwave dielectric properties of SrSmAlO4-Sr2TiO4 solid solutions. J Electroceram 34, 114–121 (2015). https://doi.org/10.1007/s10832-014-9959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9959-4

Keywords

Navigation