Skip to main content
Log in

Direct hybridization of tin oxide/graphene nanocomposites for highly efficient lithium-ion battery anodes

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

A facile direct hybridization route to prepare SnO2/graphene nanocomposites for Li-ion battery anode application is demonstrated. Uniform distribution of SnO2 nanoparticles on graphene layers was enabled by a one-step chemical synthetic route. The optimal content ratio of SnO2 and graphene was determined from microscopic observations and electrochemical studies. The nanocomposite anode with SnO2 loading level of around 70 wt.% retained reversible capacity of 643.6 mAh/g after 50 cycles and high discharge capacity of 347.8 mAh/g at a current density of 3000 mA/g, which was superior to that of graphene-only electrodes or nanocomposites with overloaded SnO2 nanoparticles. Taking advantage of nano-sized SnO2 and an electrically conductive and mechanically flexible graphene layer, SnO2/graphene nanocomposites with optimized SnO2 content exhibit excellent electrochemical properties as lithium-ion battery anodes. Our strategy offers a straightforward and high-throughput pathway for creating and directing graphene-based functional hybrids through simple mixing and thermal treatments, and may be used to assemble high-performance Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.M. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  Google Scholar 

  2. M. Armand, J.M. Tarascon, Nature 451, 652 (2008)

    Article  Google Scholar 

  3. J. Maier, Nat. Mater. 4, 805 (2005)

    Article  Google Scholar 

  4. X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8, 500 (2009)

    Article  Google Scholar 

  5. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 4, 3243 (2011)

    Article  Google Scholar 

  6. H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21, 4593 (2009)

    Article  Google Scholar 

  7. K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Science 311, 977 (2006)

    Article  Google Scholar 

  8. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008)

    Article  Google Scholar 

  9. Y.-G. Guo, J.-S. Hu, L.-J. Wan, Adv. Mater. 20, 2878 (2008)

    Article  Google Scholar 

  10. E.J. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo, I. Honma, Nano Lett. 8, 2277 (2008)

    Article  Google Scholar 

  11. H. Lee, J.-K. Yoo, J.-H. Park, J.H. Kim, K. Kang, Y.S. Jung, Adv. Energy Mater. 2, 976 (2012)

    Article  Google Scholar 

  12. P. Guo, H. Song, X. Chen, Electrochem. Commun. 11, 1320 (2009)

    Article  Google Scholar 

  13. S. Bourderau, T. Brousse, D.M. Schleich, J. Power Sources 81, 236 (1999)

    Google Scholar 

  14. X.H. Liu, L.Q. Zhang, L. Zhong, Y. Liu, H. Zheng, J.W. Wang, J.-H. Cho, S.A. Dayeh, S.T. Picraux, J.P. Sulliva, S.X. Mao, Z.Z. Ye, J.Y. Huang, Nano Lett. 11, 2251 (2011)

    Article  Google Scholar 

  15. T.H. Hwang, Y.M. Lee, B.S. Kong, J.-S. Seo, J.W. Choi, Nano Lett. 12, 802 (2012)

    Article  Google Scholar 

  16. G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, K. Kim, J. Mater. Chem. 19, 8378 (2009)

    Article  Google Scholar 

  17. C.K. Chan, X.F. Zhang, Y. Cui, Nano Lett. 8, 307 (2008)

    Article  Google Scholar 

  18. S. Ko, J.-I. Lee, H.S. Yang, S. Park, U. Jeong, Adv. Mater. 24, 4451 (2012)

    Article  Google Scholar 

  19. H. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, J. Am. Chem. Soc. 132, 13978 (2010)

    Article  Google Scholar 

  20. W.-Y. Li, L.-N. Xu, J. Chen, Adv. Funct. Mat. 15, 851 (2005)

    Article  Google Scholar 

  21. S. Hariharan, K. Saravanan, V. Ramar, P. Balaya, Phys. Chem. Chem. Phys. 15, 2945 (2013)

    Article  Google Scholar 

  22. S.-W. Kim, T.H. Han, J. Kim, H. Gwon, H.-S. Moon, S.-W. Kang, S.O. Kim, K. Kang, ACS Nano 3, 1085 (2009)

    Article  Google Scholar 

  23. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276, 1395 (1997)

    Article  Google Scholar 

  24. Y. Wang, J.Y. Lee, H.C. Zeng, Chem. Mater. 17, 3899 (2005)

    Article  Google Scholar 

  25. S.-M. Paek, E. Yoo, I. Honma, Nano Lett. 9, 72 (2009)

    Article  Google Scholar 

  26. M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem. Int. Edn 46, 750 (2007)

    Article  Google Scholar 

  27. H. Kim, S.-W. Kim, Y.-U. Park, H. Gwon, D.-H. Seo, Y. Kim, K. Kang, Nano Res. 3, 813 (2010)

    Article  Google Scholar 

  28. J. Liang, W. Wei, D. Zhong, Q. Yang, L. Li, L. Guo, ACS Appl. Mater. Interfaces 4, 454 (2012)

    Article  Google Scholar 

  29. X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, J. Power Sources 196, 6473 (2011)

    Article  Google Scholar 

  30. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  31. Y. Zhu, S. Murali, W. Cai, X. Li, S.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906 (2010)

    Article  Google Scholar 

  32. C. Lee, X. Wei, K.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  33. X.-M. Feng, R.-M. Li, Y.-W. Ma, R.-F. Chen, N.-F. Shi, Q.-L. Fan, W. Huang, Adv. Funct. Mater. 21, 2989 (2011)

    Article  Google Scholar 

  34. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3, 101 (2008)

    Article  Google Scholar 

  35. H. Park, T.H. Han, Bull. Korean Chem. Soc. 34, 3269 (2013)

    Article  Google Scholar 

  36. T.H. Han, Y.K. Huang, A. Tan, V.P. Dravid, J. Huang, J. Am. Chem. Soc. 133, 15264 (2011)

    Article  Google Scholar 

  37. X. Xiang, X.T. Zu, S. Zhu, L.M. Wang, V. Shutthanandan, P. Nachimuthu, Y. Zhang, J. Phys. D. Appl. Phys. 41, 225102 (2008)

    Article  Google Scholar 

  38. M. Zhang, D. Lei, Z. Du, X. Yin, L. Chen, Q. Li, Y. Wang, T. Wang, J. Mater. Chem. 21, 1673 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the “Graphene Part & Material Development Program” through the Ministry of Trade, Industry & Energy (MOTIE 10044380) and the “Energy Efficiency & Resources Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP)” through the Korean Government Ministry of Trade, Industry & Energy (No. 20112010100150). Electronmicroscope analysis are technically assisted by the program of “Leveraging Support of Nanofab for Nanotech R&D (2014).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Ok Shin or Tae Hee Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.O., Park, H., Lee, YG. et al. Direct hybridization of tin oxide/graphene nanocomposites for highly efficient lithium-ion battery anodes. J Electroceram 33, 195–201 (2014). https://doi.org/10.1007/s10832-014-9947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-014-9947-8

Keywords

Navigation