Journal of Electroceramics

, Volume 32, Issue 1, pp 3–27 | Cite as

Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage

  • J. G. Swallow
  • W. H. Woodford
  • Y. Chen
  • Q. Lu
  • J. J. Kim
  • D. Chen
  • Y.-M. Chiang
  • W. C. Carter
  • B. Yildiz
  • H. L. Tuller
  • K. J. Van Vliet


Functional materials for energy conversion and storage exhibit strong coupling between electrochemistry and mechanics. For example, ceramics developed as electrodes for both solid oxide fuel cells and batteries exhibit cyclic volumetric expansion upon reversible ion transport. Such chemomechanical coupling is typically far from thermodynamic equilibrium, and thus is challenging to quantify experimentally and computationally. In situ measurements and atomistic simulations are under rapid development to explore how this coupling can be used to potentially improve both device performance and durability. Here, we review the commonalities of coupling between electrochemical and mechanical states in fuel cell and battery materials, illustrating with specific cases the progress in materials processing, in situ characterization, and computational modeling and simulation. We also highlight outstanding questions and opportunities in these applications – both to better understand the limiting mechanisms within the materials and to significantly advance the durability and predictability of device performance required for renewable energy conversion and storage.


Chemomechanics Solid oxide fuel cells Batteries Ionically conductive ceramics 



Support from the U.S. Department of Energy Basic Energy Sciences Division of Materials Sciences and Engineering (J. Vetrano, Program Officer), grant DE-SC0002633 is gratefully acknowledged. This work is also supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.J. Swallow further acknowledges support from the MIT DMSE Salapatas Fellowship. K. J. Van Vliet also acknowledges support from the Presidential Early Career Award in Science and Engineering (PECASE) administered by the U.S. Air Force Office of Scientific Research.


  1. 1.
    A. Aguadero, L. Fawcett, S. Taub, R. Woolley, K.-T. Wu, N. Xu, J.A. Kilner, S.J. Skinner, Materials development for intermediate-temperature solid oxide electrochemical devices. J. Mater. Sci. 47(9), 3925–3948 (2012)Google Scholar
  2. 2.
    M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, J. Fleig, Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1−xSrxCoO3 − δ thin films. ACS Nano 7, 3276–3286 (2013)Google Scholar
  3. 3.
    D. Marrocchelli, S.R. Bishop, H.L. Tuller, B. Yildiz, Understanding chemical expansion in non-stoichiometric oxides: ceria and zirconia case studies. Adv. Funct. Mater. 22(9), 1958–1965 (2012)Google Scholar
  4. 4.
    H.L. Tuller, S.R. Bishop, D. Chen, Y. Kuru, J.-J. Kim, T.S. Stefanik, Praseodymium doped ceria: model mixed ionic electronic conductor with coupled electrical, optical, mechanical and chemical properties. Solid State Ionics 225, 194–197 (2012)Google Scholar
  5. 5.
    S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104(10), 4791–4844 (2004)Google Scholar
  6. 6.
    W. Jung, H.L. Tuller, Investigation of cathode behavior of model thin-film SrTi1−xFexO3−δ (x=0.35 and 0.5) mixed ionic-electronic conducting electrodes. J. Electrochem. Soc. 155(11), B1194–B1201 (2008)Google Scholar
  7. 7.
    K.L. Duncan, Y. Wang, S.R. Bishop, F. Ebrahimi, E.D. Wachsman, Role of point defects in the physical properties of fluorite oxides. J. Am. Ceram. Soc. 89(10), 3162–3166 (2006)Google Scholar
  8. 8.
    E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Sci. 334, 935–939 (2011)Google Scholar
  9. 9.
    T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells. Sci. 325, 852–855 (2009)Google Scholar
  10. 10.
    W.H. Woodford, PhD thesis, Massachusetts Institute of Technology (2013)Google Scholar
  11. 11.
    H.L. Tuller, S.R. Bishop, Point defects in oxides: tailoring materials through defect engineering. Annu. Rev. Mater. Res. 41, 369–398 (2011)Google Scholar
  12. 12.
    B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature. 414, 345–352 (2001)Google Scholar
  13. 13.
    W.H. Woodford, Y.-M. Chiang, W.C. Carter, “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J Electrochem. Soc. 157, A1052—A1059 (2010)Google Scholar
  14. 14.
    W.H. Woodford, W.C. Carter, Y.-M. Chiang, Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014 (2012)Google Scholar
  15. 15.
    D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51(8), 619–621 (1987)Google Scholar
  16. 16.
    D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley, 1994)Google Scholar
  17. 17.
    T. Venkatesan, S.M. Green, Pulsed laser deposition: thin films in a flash. Am. Inst. Phys. 22–24 (1996)Google Scholar
  18. 18.
    D.H. Kim, L. Bi, N.M. Aimon, P. Jiang, G.F. Dionne, C.A. Ross, Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-Substituted SrTiO3 films on Si substrates. ACS Comb. Sci. 14(3), 179–190 (2012)Google Scholar
  19. 19.
    Y. Kuru, H. Jalili, Z. Cai, B. Yildiz, H.L. Tuller, Direct probing of nanodimensioned oxide multilayers with the aid of focused ion beam milling. Adv. Mater. 23(39), 4543–4548 (2011)Google Scholar
  20. 20.
    A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nat. 419, 378–380 (2002)Google Scholar
  21. 21.
    J. Chakhalian, J.W. Freeland, H.-U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface. Sci. 318, 1114–1117 (2007)Google Scholar
  22. 22.
    S. Estradé, J.M. Rebled, M.G. Walls, F. de la Peña, C. Colliex, R. Córdoba, I.C. Infante, G. Herranz, F. Sánchez, J. Fontcuberta, F. Peiró, Effect of the capping on the local Mn oxidation state in buried (001) and (110) SrTiO3/La2/3Ca1/3MnO3 interfaces. J. Appl. Phys. 110, 103903 (2011)Google Scholar
  23. 23.
    N. Balke, S. Jesse, Y. Kim, L. Adamczyk, I.N. Ivanov, N.J. Dudney, S.V. Kalinin, Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4(12), 7349–7357 (2010)Google Scholar
  24. 24.
    C.W. Bark, P. Sharma, Y. Wang, S.H. Baek, S. Lee, S. Ryu, C.M. Folkman, T.R. Paudel, A. Kumar, S.V. Kalinin, A. Sokolov, E.Y. Tsymbal, M.S. Rzchowski, A. Gruverman, C.B. Eom, Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. Nano Lett. 12(4), 1765–1771 (2012)Google Scholar
  25. 25.
    A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin, S. Jesse, Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3(9), 707–713 (2011)Google Scholar
  26. 26.
    M.W. Louie, A. Hightower, S.M. Haile, Nanoscale electrodes by conducting atomic force microscopy: oxygen reduction kinetics at the Pt | CsHSO4 interface. ACS Nano 4(5), 2811–2821 (2010)Google Scholar
  27. 27.
    Y. Chen, Z. Cai, Y. Kuru, W. Ma, H.L. Tuller, B. Yildiz, Electronic activation of cathode superlattices at elevated temperatures– source of markedly accelerated oxygen reduction kinetics. Adv. Energy Mater. 3, 1221–1229 (2013)Google Scholar
  28. 28.
    Y. Kuru, S.R. Bishop, J.J. Kim, B. Yildiz, H.L. Tuller, Chemomechanical properties and microstructural stability of nanocrystalline Pr-doped ceria: an in situ X-ray diffraction investigation. Solid State Ionics 193(1), 1–4 (2011)Google Scholar
  29. 29.
    Y.-H. Kim, S.-I. Pyun, J.-Y. Go, An investigation of intercalation-induced stresses generated during lithium transport through sol-gel derived LixMn2O4 film electrode using a laser beam deflection method. Electrochim. Acta 51, 441–449 (2005)Google Scholar
  30. 30.
    S.-I. Pyun, J.-Y. Go, T.-S. Jang, An investigation of intercalation-induced stresses generated during lithium transport through sol-gel derived Li1−δCoO2 film electrode using a laser beam deflection method. Electrochim. Acta 49, 4477–4486 (2004)Google Scholar
  31. 31.
    V.A. Sethuraman, N. Van Winkle, D.P. Abraham, A.F. Bower, P.R. Guduru, Real-time stress measurements in lithium-ion battery negative-electrodes. J. Power Sources 206, 334–342 (2012)Google Scholar
  32. 32.
    Q. Yang, T.E. Burye, R.R. Lunt, J.D. Nicholas, In situ oxygen surface exchange coefficient measurements on lanthanum strontium ferrite thin films via the curvature relaxation method. Solid State Ionics 249–250, 123–128 (2013)Google Scholar
  33. 33.
    B.W. Sheldon, S. Mandowara, J. Rankin, Grain boundary induced compositional stress in nanocrystalline ceria films. Solid State Ionics 233, 38–46 (2013)Google Scholar
  34. 34.
    K. Nassau, The Physics and Chemistry of Color: The Fifteen Causes of Color (Wiley, New York, 1983)Google Scholar
  35. 35.
    R. Waser, T. Bieger, J. Maier, Determination of acceptor concentrations and energy levels in oxides using an optoelectrochemical technique. Solid State Commun. 76, 1077–1081 (1990)Google Scholar
  36. 36.
    T. Bieger, J. Maier, Kinetics of oxygen incorporation in SrTiO3 (Fe-doped): an optical investigation. Sensors and Actuators B 7, 763–768 (1992)Google Scholar
  37. 37.
    J.J. Kim, S.R. Bishop, N. Thompson, Y. Kuru, H.L. Tuller, Optically derived energy band gap states of Pr in ceria. Solid State Ionics 225, 198–200 (2012)Google Scholar
  38. 38.
    S.R. Bishop, J.J. Kim, N. Thompson, H.L. Tuller, Probing redox kinetics in Pr doped ceria mixed ionic electronic conducting thin films by in situ optical absorption measurements. ECS Trans. 45(1), 491–495 (2012)Google Scholar
  39. 39.
    P.R. Shearing, L.E. Howard, P.S. Jørgensen, N.P. Brandon, S.J. Harris, Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem. Commun. 12(3), 374–377 (2010)Google Scholar
  40. 40.
    M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, V. Wood, X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845–850 (2013)Google Scholar
  41. 41.
    J. Wang, Y.-c.K. Chen, Q. Yuan, A. Tkachuk, C. Erdonmez, B. Hornberger, M. Feser, Automated markerless full field hard x-ray microscopic tomography at sub-50nm 3-dimension spatial resolution. Appl. Phys. Lett. 100(14), 143107 (2012)Google Scholar
  42. 42.
    J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett, Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5(7), 541–544 (2006)Google Scholar
  43. 43.
    R. Clague, P.R. Shearing, P.D. Lee, Z. Zhang, D.J.L. Brett, A.J. Marquis, N.P. Brandon, Stress analysis of solid oxide fuel cell anode microstructure reconstructed from focused ion beam tomography. J. Power Sources. 196(21), 9018–9021 (2011)Google Scholar
  44. 44.
    J.R. Wilson, J.S. Cronin, S.A. Barnett, S.J. Harris, Measurement of three-dimensional microstructure in a LiCoO2 positive electrode. J. Power Sources 196(7), 3443–3447 (2011)Google Scholar
  45. 45.
    Z. Cai, Y. Kuru, J.W. Han, Y. Chen, B. Yildiz, Surface electronic structure transitions at high temperature on perovskite oxides: the case of strained La0.8Sr0.2CoO3 thin films. J. Am. Chem. Soc. 133(44), 17696–17704 (2011)Google Scholar
  46. 46.
    C. Zhang, M.E. Grass, A.H. McDaniel, S.C. DeCaluwe, F. El Gabaly, Z. Liu, K.F. McCarty, R.L. Farrow, M.A. Linne, Z. Hussain, G.S. Jackson, H. Bluhm, B.W. Eichhorn, Measuring fundamental properties in operating solid oxide electro-chemical cells by using in situ X-ray photoelectron spectroscopy. Nat. Mater. 9(11), 944–949 (2010)Google Scholar
  47. 47.
    E. Mutoro, E.J. Crumlin, H. Pöpke, B. Luerssen, M. Amati, M.K. Abyaneh, M.D. Biegalski, H.M. Christen, L. Gregoratti, J. Janek, Y. Shao-Horn, Reversible compositional control of oxide surfaces by electrochemical potentials. J. Phys. Chem. Lett. 3(1), 40–44 (2012)Google Scholar
  48. 48.
    S.V. Kalinin, N. Balke, Local electrochemical functionality in energy storage materials and devices by scanning probe microscopies: status and perspectives. Adv. Mater. 22(35), E193–E209 (2010)Google Scholar
  49. 49.
    J.W. Bullard III, R.L. Smith, Structural evolution of the MoO3 surface during lithium intercalation. Solid State Ionics 160, 335–349 (2003)Google Scholar
  50. 50.
    J.W. Bullard III, R.L. Smith, In situ electrochemical scanning probe microscopy of lithium battery cathode materials: vanadium pentoxide (V2O5). Mat. Res. Soc. Symp. Proc. 756, EE7.10.1–EE7.10.6 (2003)Google Scholar
  51. 51.
    D.N. Leonard, A. Kumar, S. Jesse, M.D. Biegalski, H.M. Christen, E. Mutoro, E.J. Crumlin, Y. Shao-Horn, S.V. Kalinin, A.Y. Borisevich, Nanoscale probing of voltage activated oxygen reduction/evolution reactions in nanopatterned (LaxSr1−x)CoO3−δ cathodes. Adv. Energy Mater. 3, 788–797 (2013)Google Scholar
  52. 52.
    N. Balke, S. Jesse, A.N. Morozovska, E. Eliseev, D.W. Chung, Y. Kim, L. Adamczyk, R.E. García, N. Dudney, S.V. Kalinin, Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5, 749–754 (2010)Google Scholar
  53. 53.
    H. Jalili, J.W. Han, Y. Kuru, Z. Cai, B. Yildiz, New insights into the strain coupling to surface chemistry, electronic structure, and reactivity of La0.7Sr0.3MnO3. J. Phys. Chem. Lett. 2(7), 801–807 (2011)Google Scholar
  54. 54.
    K. Katsiev, B. Yildiz, K. Balasubramaniam, P.A. Salvador, Electron tunneling characteristics on La0.7Sr0.3MnO3 thin-film surfaces at high temperature. Appl. Phys. Lett. 95(9), 092106 (2009)Google Scholar
  55. 55.
    Y. Chen, W. Jung, Z. Cai, J.J. Kim, H.L. Tuller, B. Yildiz, Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1−xFexO3 surfaces. Energy Environ. Sci. 5(7), 7979–7988 (2012)Google Scholar
  56. 56.
    J. Zapata, M. Burriel, P. García, J.A. Kilner, J. Santiso, Anisotropic 18O tracer diffusion in epitaxial films of GdBaCo2O5+δ cathode material with different orientations. J. Mater. Chem. A 1, 7408–7414 (2013)Google Scholar
  57. 57.
    M. Burriel, G. Garcia, J. Santiso, J.A. Kilner, R.J. Chater, S.J. Skinner, Anisotropic oxygen diffusion properties in epitaxial thin films of La2NiO4+δ. J. Mater. Chem. 18, 416–422 (2008)Google Scholar
  58. 58.
    M. Abazari, M. Tsuchiya, S. Ramanathan, High-temperature electrical conductivity measurements on nanostructured yttria-doped ceria thin films in ozone. J. Am. Ceram. Soc. 95(1), 312–317 (2012)Google Scholar
  59. 59.
    D. Chen, S.R. Bishop, H.L. Tuller, Praseodymium-cerium oxide thin film cathodes: Study of oxygen reduction reaction kinetics. J. Electroceram. 28(1), 62–69 (2012)Google Scholar
  60. 60.
    W. Lai, S.M. Haile, Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J. Am. Ceram. Soc. 88(11), 2979–2997 (2005)Google Scholar
  61. 61.
    D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y.S. Cohen, H.-J. Kim, M. Schmidt, On the capacity fading of LiCoO2 intercalation electrodes: the effect of cycling, storage, temperature, and surface film forming additives. Electrochim. Acta 47, 4291–4306 (2002)Google Scholar
  62. 62.
    E. Barsoukov, J.H. Kim, J.H. Kim, C.O. Yoon, H. Lee, Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence. Solid State Ionics 116, 249–261 (1999)Google Scholar
  63. 63.
    I. Uchida, H. Ishikawa, M. Mohamedi, M. Umeda, AC-impedance measurements during thermal runaway process in several lithium/polymer batteries. J. Power Sources. 119-121, 821–825 (2003)Google Scholar
  64. 64.
    F.S. Baumann, J. Fleig, G. Cristiani, B. Stuhlhofer, H.-U. Habermeier, J. Maier, Quantitative comparison of mixed con-ducting SOFC cathode materials by means of thin film model electrodes. J. Electrochem. Soc. 154(9), B931—B941 (2007)Google Scholar
  65. 65.
    J. Fleig, H.-R. Kim, J. Jamnik, J. Maier, Oxygen reduction kinetics of lanthanum manganite (LSM) model cathodes: partial pressure dependence and rate-limiting steps. Fuel Cells. 8(5), 330–337 (2008)Google Scholar
  66. 66.
    W.C. Chueh, S.M. Haile, Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. Phys. Chem. Chem. Phys. 11, 8144–8148 (2009)Google Scholar
  67. 67.
    H. Wang, Y.-I. Jang, B. Huang, D.R. Sadoway, Y.-M. Chiang, TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146(2), 473–480 (1999)Google Scholar
  68. 68.
    D. Miller, C. Proff, J. Wen, D. Abraham, Direct observation of microstructural evolution in Li battery cathode oxide particles during electrochemical cycling by in situ electron microscopy. Microsc. Microanal. 18(S2), 1108–1109 (2012)Google Scholar
  69. 69.
    S.J. Harris, A. Timmons, D.R. Baker, C. Monroe, Direct in situ measurements of Li transport in Li-ion battery negative electrodes. Chem. Phys. Lett. 485, 265–274 (2010)Google Scholar
  70. 70.
    Y. Qi, S.J. Harris, In situ observation of strains during lithiation of a graphite electrode. J. Electrochem. Soc. 157(6), A741–A747 (2010)Google Scholar
  71. 71.
    C.M. Wang, W. Xu, J. Liu, D.W. Choi, B. Arey, L.V. Saraf, J.G. Zhang, Z.G. Yang, S. Thevuthasan, D.R. Baer, N. Salmon, In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: challenges and opportunities. J. Mater. Res. 25(8), 1541–1547 (2010)Google Scholar
  72. 72.
    J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science. 330(6010), 1515–1520 (2010)Google Scholar
  73. 73.
    J. Rankin, L.W. Hobbs, L.A. Boatner, C.W. White, An in situ annealing study of lead implanted single crystal calcium titanate. Nucl. Inst. Methods Phys. Res. B 32, 28–31 (1988)Google Scholar
  74. 74.
    C. Villevieille, M. Boinet, L. Monconduit, Direct evidence of morphological changes in conversion type electrodes in Li-ion battery by acoustic emission. Electrochem. Commun. 12(10), 1336–1339 (2010)Google Scholar
  75. 75.
    K. Rhodes, N. Dudney, E. Lara-Curzio, C. Daniel, Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission. J. Electrochem. Soc. 157(12), A1354–A1360 (2010)Google Scholar
  76. 76.
    T. Ohzuku, H. Tomura, K. Sawai, Monitoring of particle fracture by acoustic emission during charge and discharge of Li/MnO2 cells. J. Electrochem. Soc. 144(10):3496–3500 (1997)Google Scholar
  77. 77.
    K. Sawai, H. Tomura, T. Ohzuku, Acoustic emission histometry for battery material research. Denki Kagaku 66(3):301–307 (1998)Google Scholar
  78. 78.
    K. Sawai, K. Yoshikawa, H. Tomura, T. Ohzuku, Characterization of materials by acoustic emission histometry for advanced lithium batteries. Prog. Batter. Battery Mater. 17, 201–207 (1998)Google Scholar
  79. 79.
    S. Didier-Laurent, H. Idrissi, L. Roué, In-situ study of the cracking of metal hydride electrodes by acoustic emission technique. J. Power Sources 179(1), 412–416 (2008)Google Scholar
  80. 80.
    Y. Kimura, T. Kushi, S.-i. Hashimoto, K. Amezawa, T. Kawada, Influences of temperature and oxygen partial pressure on mechanical properties of La0.6Sr0.4Co1−yFeyO3−δ. J. Am. Ceram. Soc. 95(8), 2608–2613 (2012)Google Scholar
  81. 81.
    K. Amezawa, T. Kushi, K. Sato, A. Unemoto, S.-i. Hashimoto, T. Kawada, Elastic moduli of Ce0.9Gd0.1O2−δ at high temperatures under controlled atmospheres. Solid State Ionics 198(1), 32–38 (2011)Google Scholar
  82. 82.
    T. Kushi, K. Sato, A. Unemoto, S. Hashimoto, K. Amezawa, T. Kawada, Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres. J. Power Sources 196(19), 7989–7993 (2011)Google Scholar
  83. 83.
    K. Sato, K. Yashiro, T. Kawada, H. Yugami, T. Hashida, J. Mizusaki, Fracture process of nonstoichiometric oxide based solid oxide fuel cell under oxidizing/reducing gradient conditions. J. Power Sources 195(17), 5481–5486 (2010)Google Scholar
  84. 84.
    S. Watanabe, K. Sato, Y. Takeyama, F. Iguchi, K. Yashiro, T. Hashida, J. Mizusaki, T. Kawada, in Proceedings of the ASME 2010 Eighth International Fuel Cell Science, Engineering and Technology Conference. Development of in-situ mechanical testing method for SOFC components (2010)Google Scholar
  85. 85.
    J. Milhans, D.S. Li, M. Khaleel, X. Sun, M.S. Al-Haik, A. Harris, H. Garmestani, Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures. J. Power Sources 196(13), 5599–5603 (2011)Google Scholar
  86. 86.
    M. Qu, W.H. Woodford, J.M. Maloney, W. Craig Carter, Y.-M. Chiang, K.J. Van Vliet, Nanomechanical quantifica-tion of elastic, plastic, and fracture properties of LiCoO2. Adv. Energy Mater. 2(8), 940–944 (2012)Google Scholar
  87. 87.
    T. Maxisch, G. Ceder, Elastic properties of olivine LixFePO4 from first principles. Phys. Rev. B. 73, 174112 (2006)Google Scholar
  88. 88.
    Y. Qi, H. L.G. Hector Jr., A. Timmons, Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157(5), A558–A566 (2010)Google Scholar
  89. 89.
    V. Kanchana, G. Vaitheeswaran, A. Svane, A. Delin, First-principles study of elastic properties of CeO2, ThO2 and PoO2. J. Phys. Condens. Matter 18(42), 9615–9624 (2006)Google Scholar
  90. 90.
    A. Kushima, B. Yildiz, Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? J. Mater. Chem. 20(23), 4809 (2010)Google Scholar
  91. 91.
    S. Shi, Y. Qi, H. Li, L.G. Hector Jr, Defect thermodynamics and diffusion mechanisms in Li2Co3 and implications for the solid electrolyte interphase in li-ion batteries. J. Phys. Chem. 117, 8579–8593 (2013)Google Scholar
  92. 92.
    D. Marrocchelli, S.R. Bishop, H.L. Tuller, G.W. Watson, B. Yildiz, Charge localization increases chemical expansion in cerium-based oxides. Phys. Chem. Chem. Phys. 14(35), 12070 (2012)Google Scholar
  93. 93.
    P.P. Dholabhai, S. Anwar, J.B. Adams, P. Crozier, R. Sharma, Kinetic lattice Monte Carlo model for oxygen vacancy diffusion in praseodymium doped ceria: applications to materials design. J. Solid State Chem. 184(4), 811–817 (2011)Google Scholar
  94. 94.
    P.P. Dholabhai, J.B. Adams, P. Crozier, R. Sharma, Oxygen vacancy migration in ceria and Pr-doped ceria: A DFT+U study. J. Chem. Phys. 132(9), 094104 (2010)Google Scholar
  95. 95.
    Y.-T. Cheng, M.W. Verbrugge, The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104, 083521 (2008)Google Scholar
  96. 96.
    Y.-T. Cheng, M.W. Verbrugge, Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)Google Scholar
  97. 97.
    Y.-T. Cheng, M.W. Verbrugge, Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157(4), A508–A516 (2010)Google Scholar
  98. 98.
    R. Deshpande, Y.-T. Cheng, M.W. Verbrugge, A. Timmons, Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle. J. Electrochem. Soc. 158(6), A718–A724 (2011)Google Scholar
  99. 99.
    J. Christensen, J. Newman, A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153(6), A1019–A1030 (2006)Google Scholar
  100. 100.
    J. Park, W. Lu, A.M. Sastry, Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation. J. Electrochem. Soc. 158(2), A201–A206 (2011)Google Scholar
  101. 101.
    X. Zhang, W. Shyy, A.M. Sastry, Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007)Google Scholar
  102. 102.
    X. Zhang, A.M. Sastry, W. Shyy, Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155(7), A542–A552 (2008)Google Scholar
  103. 103.
    R. Deshpande, Y. Qi, Y.-T. Cheng, Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157(8), A967–A971 (2010)Google Scholar
  104. 104.
    S.J. Harris, R.D. Deshpande, Y. Qi, I. Dutta, Y.-T. Cheng, Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J. Mater. Res. 25(8), 1433–1440 (2010)Google Scholar
  105. 105.
    K.E. Aifantis, J.P. Dempsey, Stable crack growth in nanostructured Li-batteries. J. Power Sources 143, 203–211 (2005)Google Scholar
  106. 106.
    K.E. Aifantis, S.A. Hackney, J.P. Dempsey, Design criteria for nanostructured Li-ion batteries. J. Power Sources 165, 874–879 (2007)Google Scholar
  107. 107.
    Y. Hu, X. Zhao, Z. Suo, Averting cracks caused by insertion reaction in lithium-ion batteries. J. Mater. Res. 25(6), 1007–1010 (2010)Google Scholar
  108. 108.
    M. Doyle, J.C. Newman, Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process. J. Appl. Electrochem. 27, 846–856 (1997)Google Scholar
  109. 109.
    M. Doyle, J. Newman, A.S. Gozdz, C.N. Schmutz, J.-M. Tarascon, Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143(6), 1890–1903 (1996)Google Scholar
  110. 110.
    M. Doyle, T.F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140(6), 1526–1533 (1993)Google Scholar
  111. 111.
    M. Doyle, J. Newman, The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochim. Acta 40, 2191–2196 (1995)Google Scholar
  112. 112.
    J. Newman, W. Tiedemann, Porous-electrode theory with battery applications. Aiche J. 21(1), 25–41 (1975)Google Scholar
  113. 113.
    T.F. Fuller, M. Doyle, J. Newman, Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141(1), 1–10 (1994)Google Scholar
  114. 114.
    S. Golmon, K. Maute, M.L. Dunn, Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries. Comput. Struct. 87, 1567–1579 (2009)Google Scholar
  115. 115.
    S. Renganathan, G. Sikha, S. Santhanagopalan, R.E. White, Theoretical analysis of stresses in a lithium ion cell. J. Electrochem. Soc. 157(2), A155–A163 (2010)Google Scholar
  116. 116.
    J. Christensen, Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 157(3), A366–A380 (2010)Google Scholar
  117. 117.
    R. Purkayastha, R.M. McMeeking, A linearized model for lithium ion batteries and maps for their performance and failure. J. Appl. Mech. 79(3), 031021 (2012)Google Scholar
  118. 118.
    R.T. Purkayastha, R.M. McMeeking, An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress. Comput. Mech. 50(2), 209–227 (2012)Google Scholar
  119. 119.
    J. Christensen, J. Newman, Stress generation and fracture in lithium insertion materials. J. Sold State Electrochem. 10, 293–319 (2006)Google Scholar
  120. 120.
    R.E. García, Y.-M. Chiang, W.C. Carter, P. Limthongkul, C.M. Bishop, Microstructrual modeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 152(1), A255–A263 (2005)Google Scholar
  121. 121.
    M. Smith, R.E. García, Q.C. Horn, The effect of microstructure on the galvanostatic discharge of graphite anode electrodes in LiCoO2-based rocking-chair rechargeable batteries. J. Electrochem. Soc. 156(11), A896–A904 (2009)Google Scholar
  122. 122.
    M.D. Chung, J.H. Seo, X.C. Zhang, A.M. Sastry, Implementing realistic geometry and measured diffusion coefficients into single particle electrode modeling based on experiments with single LiMn2O4 spinel particles. J. Electrochem. Soc. 158(4), A371–A378 (2011)Google Scholar
  123. 123.
    H.-W. Chiang, R.N. Blumenthal, R.A. Fournelle, A high temperature lattice parameter and dilatometer study of the defect structure of nonstoichiometric cerium dioxide. Solid State Ionics 66, 85–95 (1993)Google Scholar
  124. 124.
    S.R. Bishop, K. Duncan, E.D. Wachsman, Thermo-chemical expansion of SOFC materials. ECS Trans. 1, 13–21 (2006)Google Scholar
  125. 125.
    C.Y. Park, A.J. Jacobson, Thermal and chemical expansion properties of La0.2Sr0.8Fe0.55Ti0.45O3−x. Solid State Ionics 176(35-36), 2671–2676 (2005)Google Scholar
  126. 126.
    S.B. Adler, Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84, 2117–2119 (2001)Google Scholar
  127. 127.
    S.J. Hong, A.V. Virkar, Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J. Am. Ceram. Soc. 78(2), 433–439 (1995)Google Scholar
  128. 128.
    S.R. Bishop, K.L. Duncan, E.D. Wachsman, Thermo-chemical expansion in strontium-doped lanthanum cobalt iron oxide. J. Am. Ceram. Soc. 93(12), 4115–4121 (2010)Google Scholar
  129. 129.
    S.R. Bishop, J.-J. Kim, N. Thompson, D. Chen, Y. Kuru, T. Stefanik, H.L. Tuller, Mechanical, electrical, and optical properties of (Pr,Ce)O2 solid solutions: kinetic studies. ECS Trans. 35, 1137–1144 (2011)Google Scholar
  130. 130.
    S.R. Bishop, H.L. Tuller, Development of a predictive thermo-chemical expansion and stress model in (Pr, Ce)O2−δ. ECS Trans. 41, 153–159 (2012)Google Scholar
  131. 131.
    M. Morales, J.J. Roa, X.G. Capdevila, M. Segarra, S. Piñol, Mechanical properties at the nanometer scale of GDC and YSZ used as electrolytes for solid oxide fuel cells. Acta Mater. 58(7), 2504–2509 (2010)Google Scholar
  132. 132.
    R. Korobko, C.-T. Chen, S. Kim, S.R. Cohen, E. Wachtel, N. Yavo, I. Lubomirsky, Influence of Gd content on the room temperature mechanical properties of Gd-doped ceria. Scripta Mater. 66(3-4), 155–158 (2012)Google Scholar
  133. 133.
    E. Wachtel, I. Lubomirsky, The elastic modulus of pure and doped ceria. Scripta Mater. 65(2), 112–117 (2011)Google Scholar
  134. 134.
    N.I. Karageorgakis, A. Heel, J.L.M. Rupp, M.H. Aguirre, T. Graule, L.J. Gauckler, Properties of flame sprayed Ce0.8Gd0.2O1.9−δ electrolyte thin films. Adv. Funct. Mater. 21(3), 532–539 (2011)Google Scholar
  135. 135.
    Y. Wang, K. Duncan, E.D. Wachsman, F. Ebrahimi, The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides. Solid State Ionics 178(1-2), 53–58 (2007)Google Scholar
  136. 136.
    T. Hashida, K. Sato, Y. Takeyama, T. Kawada, J. Mizusaki, Deformation and fracture characteristics of zirconia and ceria-based electrolytes for SOFCs under reducing atmospheres. ECS Trans. 25, 1565–1572 (2009)Google Scholar
  137. 137.
    A. Atkinson, A. Selçuk, Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ionics 134, 59–66 (2000)Google Scholar
  138. 138.
    A. Atkinson, T.M.G.M. Ramos, Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ionics 129, 259–269 (2000)Google Scholar
  139. 139.
    R. Krishnamurthy, B.W. Sheldon, Stresses due to oxygen potential gradients in non-stoichiometric oxides. Acta Mater. 52, 1807–1822 (2004)Google Scholar
  140. 140.
    S. Sinha, D.W. Murphy, Lithium intercalation in cubic TiS2. Solid State Ionics 20(1), 81–84 (1986)Google Scholar
  141. 141.
    A. Yamada, H. Koizumi, N. Sonoyama, R. Kanno, Phase change in LixFePO4. Electrochem. Solid-State Lett. 8(8), A409–A413 (2005)Google Scholar
  142. 142.
    T. Ohzuku, M. Kitagawa, T. Hirai, Electrochemistry of manganese dioxide in lithium nonaqueous cell III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J. Electrochem. Soc. 137(3), 769–775 (1990)Google Scholar
  143. 143.
    J.N. Reimers, J.R. Dahn, Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139(8), 2091 (1992)Google Scholar
  144. 144.
    Y.-I. Jang, B. Huang, H. Wang, D.R. Sadoway, G. Ceder, Y.-M. Chiang, H. Liu, H. Tamura, LiAlyCo1−yO2 (R\(\overline {3}\)m) intercalation cathode for rechargeable lithium batteries. J. Electrochem. Soc. 146(3), 862–868 (1999)Google Scholar
  145. 145.
    H. Wang, Y.-I. Jang, B. Huang, D.R. Sadoway, Y.-M. Chiang, Electron microscopic characterization of electro-chemically cycled LiCoO2 and Li(Al,Co)O2 battery cathodes. J. Power Sources 81–82, 594–598 (1999)Google Scholar
  146. 146.
    H. Gabrisch, J. Wilcox, M.M. Doeff, TEM study of fracturing in spherical and plate-like LiFePO4 particles. Electrochem. Solid-State Lett. 11(3), A25–A29 (2008)Google Scholar
  147. 147.
    J. Shim, R. Kostecki, T. Richardson, X. Song, K.A. Striebel, Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature. J. Power Sources 112(1), 222–230 (2002)Google Scholar
  148. 148.
    Y. Shin, A. Manthiram, Factors influencing the capacity fade of spinel lithium manganese oxides. J. Electrochem. Soc. 151(2), A204–A208 (2004)Google Scholar
  149. 149.
    Y. Itou, Y. Ukyo, Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J. Power Sources 146(1-2), 39–44 (2005)Google Scholar
  150. 150.
    M. Kerlau, J.A. Reimer, E.J. Cairns, Investigation of particle isolation in Li-ion battery electrodes using 7Li NMR spectroscopy. Electrochem. Commun. 7(12), 1249–1251 (2005)Google Scholar
  151. 151.
    W. Choi, A. Manthiram, Superior capacity retention spinel oxyfluoride cathodes for lithium–ion batteries. Electrochem. Solid-State Lett. 9(5), A245–A248 (2006)Google Scholar
  152. 152.
    Q.C. Horn, K. White, in 211th Meeting of The Electrochemical Society. Understanding lithium-ion degradation and failure mechanisms by cross-section analysis (2007)Google Scholar
  153. 153.
    S. Bhattacharya, A.R. Riahi, A.T. Alpas, In-situ observations of lithiation/de-lithiation induced graphite damage during electrochemical cycling. Scripta Mater. 64(2), 165–168 (2011)Google Scholar
  154. 154.
    B.X. Huang, V. Vasechko, Q.L. Ma, J. Malzbender, Thermo-mechanical properties of (Sr,Y)TiO3 as anode material for solid oxide fuel cells. J. Power Sources 206, 204–209 (2012)Google Scholar
  155. 155.
    S. Giraud, J. Canel, Young’s modulus of some SOFCs materials as a function of temperature. J. Eur. Ceram. Soc. 28(1), 77–83 (2008)Google Scholar
  156. 156.
    M. Mavrikakis, B. Hammer, J. Nørskov, Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81(13), 2819–2822 (1998)Google Scholar
  157. 157.
    B. Hammer, J.K. Nørskov, Why gold is the noblest of all the metals. Nature. 376, 238–240 (1995)Google Scholar
  158. 158.
    F.W. Herbert, K.J. Van Vliet, B. Yildiz, Plasticity-induced oxidation reactivity on Ni(100) studied by scanning tunneling spectroscopy. MRS Commun. 2(01), 23–27 (2012)Google Scholar
  159. 159.
    P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2(6), 454–460 (2010)Google Scholar
  160. 160.
    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 3(7), 546–550 (2011)Google Scholar
  161. 161.
    Y.-L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, D. Morgan, Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011)Google Scholar
  162. 162.
    W. Jung, H.L. Tuller, A new model describing solid oxide fuel cell cathode kinetics: model thin film SrTi1−xFexO3−δ mixed conducting oxides-a case study. Adv. Energy Mater. 1(6), 1184–1191 (2011)Google Scholar
  163. 163.
    A. Chroneos, B. Yildiz, A. Tarancón, D. Parfitt, J.A. Kilner, Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4(8), 2774–2789 (2011)Google Scholar
  164. 164.
    J.W. Han, B. Yildiz, Enhanced one dimensional mobility of oxygen on strained LaCoO3(001) surface. J. Mater. Chem. 21(47), 18983 (2011)Google Scholar
  165. 165.
    A. Kushima, S. Yip, B. Yildiz, Competing strain effects in reactivity of LaCoO3 with oxygen. Phys. Rev. B 82(11), 115435 (2010)Google Scholar
  166. 166.
    A. Lussier, J. Dvorak, S. Stadler, J. Holroyd, M. Liberati, E. Arenholz, S.B. Ogale, T. Wu, T. Venkatesan, Y.U. Idzerda, Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces. Thin Solid Films 516(6), 880–884 (2008)Google Scholar
  167. 167.
    H. Yamada, M. Kawasaki, Y. Tokura, Epitaxial growth and valence control of strained perovskite SrFeO3 films. Appl. Phys. Lett. 80, 622–624 (2002)Google Scholar
  168. 168.
    G. Jose la O’, S.-J. Ahn, E. Crumlin, Y. Orikasa, M.D. Biegalski, H.M. Christen, Y. Shao-Horn, Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem. Int. Ed. 49(31), 5344–5347 (2010)Google Scholar
  169. 169.
    K. Szot, M. Pawelczyk, J. Herion, C.h. Freiburg, J. Albers, R. Waser, J. Hulliger, J. Kwapulinski, J. Dec, Nature of the surface layer in ABO3-type perovskites at elevated temperatures. Appl. Phys. A 62, 335–343 (1996)Google Scholar
  170. 170.
    T.T. Fister, D.D. Fong, J.A. Eastman, P.M. Baldo, M.J. Highland, P.H. Fuoss, K.R. Balasubramaniam, J.C. Meador, P.A. Salvador, In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure. Appl. Phys. Lett. 93(15), 151904 (2008)Google Scholar
  171. 171.
    C.N. Borca, B. Xu, T. Komesu, H.-K. Jeong, M.T. Liu, S.H. Liou, P.A. Dowben, The surface phases of the La0.65Pb0.35MnO3 manganese perovskite surface. Surf. Sci. 512, L346–L352 (2002)Google Scholar
  172. 172.
    H. Dulli, E.W. Plummer, P.A. Dowben, J. Choi, S.-H. Liou, Surface electronic phase transition in colossal magnetoresistive manganese perovskites: La0.65Sr0.35MnO3. Appl. Phys. Lett. 77(4), 570–572 (2000)Google Scholar
  173. 173.
    W. Jung, H.L. Tuller, Investigation of surface Sr segregation in model thin film solid oxide fuel cell perovskite electrodes. Energy Environ. Sci. 5, 5370–5378 (2012)Google Scholar
  174. 174.
    Z. Cai, M. Kubicek, J. Fleig, B. Yildiz, Chemical heterogeneities on La0.6Sr0.4CoO3−δ thin films—correlations to cathode surface activity and stability. Chem. Mater. 24(6), 1116–1127 (2012)Google Scholar
  175. 175.
    M. Kubicek, A. Limbeck, T. Frömling, H. Hutter, J. Fleig, Relationship between cation segregation and the electrochemical oxygen reduction kinetics of La0.6Sr0.4CoO3−δ thin film electrodes. J. Electrochem. Soc. 158(6), B727–B734 (2011)Google Scholar
  176. 176.
    S.P. Jiang, J.G. Love, Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells. Solid State Ionics 138, 183–190 (2001)Google Scholar
  177. 177.
    W. Lee, J.W. Han, Y. Chen, Z. Cai, B. Yildiz, Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013)Google Scholar
  178. 178.
    V.A. Sethuraman, V. Srinivasan, A.F. Bower, P.R. Guduru, In situ measurements of stress-potential coupling in lithiated silicon. J. Electrochem. Soc. 157(11), A1253–A1261 (2010)Google Scholar
  179. 179.
    A.K. Pannikkat, R. Raj, Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures. Acta Mater. 47(12), 3423–3431 (1999)Google Scholar
  180. 180.
    A.F. Bower, P.R. Guduru, V.A. Sethuraman, A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59(4), 804–828 (2011)Google Scholar
  181. 181.
    R.A. De Souza, A. Ramadan, S. Hörner, Modifying the barriers for oxygen-vacancy migration in fluorite-structured CeO2 electrolytes through strain: a computer simulation study. Energy Environ. Sci. 5, 5445–5453 (2012)Google Scholar
  182. 182.
    N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature. 408, 946–949 (2000)Google Scholar
  183. 183.
    I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176(13–14), 1319–1326 (2005)Google Scholar
  184. 184.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889), 676–680 (2008)Google Scholar
  185. 185.
    X. Guo, Comment on Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science 324(5926), 465 (2009)Google Scholar
  186. 186.
    A. Cavallaro, M. Burriel, J. Roqueta, A. Apostolidis, A. Bernardi, A. Tarancón, R. Srinivasan, S.N. Cook, H.L. Fraser, J.A. Kilner, D.W. McComb, J. Santiso, Electronic nature of the enhanced conductivity in YSZ-STO multilayers deposited by PLD. Solid State Ionics 181(13–14), 592–601 (2010)Google Scholar
  187. 187.
    N. Schichtel, C. Korte, D. Hesse, J. Janek, Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11(17), 3043 (2009)Google Scholar
  188. 188.
    H. Aydin, C. Korte, M. Rohnke, J. Janek, Oxygen tracer diffusion along interfaces of strained Y2O3/YSZ multilayers. Phys. Chem. Chem. Phys. 15, 1944–1955 (2013)Google Scholar
  189. 189.
    D. Pergolesi, E. Fabbri, S.N. Cook, V. Roddatis, E. Traversa, J.A. Kilner, Tensile lattice distortion does not affect oxygen transport in yttria-stabilized zirconia–CeO2 heterointerfaces. ACS Nano 6, 10524–10534 (2012)Google Scholar
  190. 190.
    T.X.T. Sayle, S.C. Parker, D.C. Sayle, Ionic conductivity in nano-scale CeO2/YSZ heterolayers. J. Mater. Chem. 16, 1067–1081 (2006)Google Scholar
  191. 191.
    B. Li, J. Zhang, T. Kaspar, V. Shutthanandan, R.C. Ewing, J. Lian, Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 1296–1301 (2013)Google Scholar
  192. 192.
    S. Kim, H.J. Avila-Paredes, S. Wang, C.-T. Chen, R.A. De Souza, M. Martin, Z.A. Munir, On the conduction pathway for protons in nanocrystalline yttria-stabilized zirconia. Phys. Chem. Chem. Phys. 11, 3035–3038 (2009)Google Scholar
  193. 193.
    S. Sanna, V. Esposito, A. Tebano, S. Licoccia, E. Traversa, G. Balestrino, Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small 6(17), 1863–1867 (2010)Google Scholar
  194. 194.
    C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Ionic conductivity and activation energy for oxygen ion transport in superlattices- the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10, 4623–4635 (2008)Google Scholar
  195. 195.
    M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, J. Bøttiger, Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv. Funct. Mater. 20(13), 2071–2076 (2010)Google Scholar
  196. 196.
    K. Mohan Kant, V. Esposito, N. Pryds, Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O2−δ thin films. Appl. Phys. Lett. 100(3), 033105 (2012)Google Scholar
  197. 197.
    Y.-M. Choi, S.-I. Pyun, Effects of intercalation-induced stress on lithium transport through porous LiCoO2 electrode. Solid State Ionics 99, 173–183 (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • J. G. Swallow
    • 1
  • W. H. Woodford
    • 1
  • Y. Chen
    • 2
  • Q. Lu
    • 1
  • J. J. Kim
    • 1
  • D. Chen
    • 1
  • Y.-M. Chiang
    • 1
  • W. C. Carter
    • 1
  • B. Yildiz
    • 2
  • H. L. Tuller
    • 1
  • K. J. Van Vliet
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Laboratory for Material Chemomechanics (8-237)Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations