Journal of Electroceramics

, Volume 31, Issue 1–2, pp 176–180 | Cite as

Synthesis of nanostructured Li2MnSiO4/C using a microwave assisted sol–gel process with water as a base solvent

  • Jeon-Jin Choi
  • Soo Kim
  • Won-Bin Im
  • Wonyoung Chang
  • Byung-Won Cho
  • Jong Hak Kim
  • Hee-Lack Choi
  • Kyung Yoon ChungEmail author


Microwave assisted sol–gel method is used to fabricate nanostructured Li2MnSiO4/C composites. Our process has the advantages in homogenous heating and reduced reaction time. In addition, the water is used as a base solvent while the conventional microwave-solvothermal method use the organic solvent as the base solvent, which makes our process much more safe and economical. Here, our prepared Li2MnSiO4/C composite exhibits an enhanced discharge capacity of 173.1 mAh g−1, compared to the conventional processes.


Lithium-ion batteries Cathodes Microwave assisted sol–gel process Lithium manganese silicate 



This work was supported by the Global Research Lab (GRL) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (grant number: NRF-2010-00351).

Supplementary material

10832_2013_9842_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1827 kb)


  1. 1.
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
  2. 2.
    M.S. Islam, R. Dominko, C. Masquelier, C. Sirisopanaporn, A.R. Armstrong, P.G. Bruce, J. Mater. Chem. 21, 9811 (2011)CrossRefGoogle Scholar
  3. 3.
    W. Liu, Y. Xu, R. Yang, J. Alloy Compd. 480, L1 (2009)CrossRefGoogle Scholar
  4. 4.
    K. Karthikeyan, V. Aravindan, S.B. Lee, I.C. Jang, H.H. Lim, G.J. Park, M. Yoshio, Y.S. Lee, J. Power Sources 195, 3761 (2010)CrossRefGoogle Scholar
  5. 5.
    R.J. Gummow, N. Sharma, V.K. Peterson, Y. He, J. Solid State Chem. 188, 32 (2012)CrossRefGoogle Scholar
  6. 6.
    R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik, Electrochem. Commun. 8, 217 (2006)CrossRefGoogle Scholar
  7. 7.
    R. Dominko, J. Power Sources 184, 462 (2008)CrossRefGoogle Scholar
  8. 8.
    I. Belharouak, A. Abouimrane, K. Amine, J. Phy. Chem. C 113, 20733 (2009)CrossRefGoogle Scholar
  9. 9.
    C. Deng, S. Zhang, S.Y. Yang, J. Alloy Compd. 487, L18 (2009)CrossRefGoogle Scholar
  10. 10.
    V. Aravindan, K. Karthikeyan, S. Ravi, S. Amaresh, W.S. Kim, Y.S. Lee, J. Mater. Chem. 20, 7340 (2010)CrossRefGoogle Scholar
  11. 11.
    C. Deng, S. Zhang, B.L. Fu, S.Y. Yang, L. Ma, Mater. Chem. Phys. 120, 14 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Muraliganth, K.R. Stroukoff, A. Manthiram, Chem. Mater. 22, 5754 (2010)CrossRefGoogle Scholar
  13. 13.
    V. Aravindan, K. Karthikeyan, J.W. Lee, S. Madhavi, Y.S. Lee, J. Phys. D Appl. Phys. 44, 152001 (2011)CrossRefGoogle Scholar
  14. 14.
    D.M. Kempaiah, D. Rangappa, I. Honma, Chem. Commun. 48, 2698 (2012)CrossRefGoogle Scholar
  15. 15.
    X.-M. Liu, Z.-D. Huang, S. Oh, P.-C. Ma, P.C.H. Chan, G.K. Vedam, K. Kang, J.-K. Kim, J. Power Sources 195, 4290 (2010)CrossRefGoogle Scholar
  16. 16.
    M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid-State Lett. 6, A207 (2003)CrossRefGoogle Scholar
  17. 17.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  18. 18.
    H. Yoo, J.H. Ryu, S. Park, Y. Park, B.H. Ka, S.M. Oh, J. Electrochem. Sci. Tech. 2, 45 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jeon-Jin Choi
    • 1
    • 2
  • Soo Kim
    • 1
  • Won-Bin Im
    • 1
    • 3
  • Wonyoung Chang
    • 1
  • Byung-Won Cho
    • 1
  • Jong Hak Kim
    • 2
  • Hee-Lack Choi
    • 3
  • Kyung Yoon Chung
    • 1
    Email author
  1. 1.Center for Energy ConvergenceKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.Energy Materials LaboratoryYonsei UniversitySeoulRepublic of Korea
  3. 3.Department of Materials Science and EngineeringPukyong National UniversityBusanRepublic of Korea

Personalised recommendations