Skip to main content
Log in

Piezoelectric properties of the high temperature MPB xPbTiO3 - (1−x)[BiScO3 + Bi(Ni1/2Ti1/2)O3] composition

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The ternary perovskite xPbTiO3 - (1−x)[BiScO3 + Bi(Ni1/2Ti1/2)O3] (PT-BS-BNiT), where x = 0.54 is the morphotropic phase boundary composition, was studied for high temperature ferroelectric applications. Polycrystalline ceramics were prepared using the standard solid-state methods. The stoichiometric ceramic was found to have room temperature dielectric permittivity and loss values at 1 kHz of 1490 and 0.049 respectively. Piezoelectric properties, of the stoichiometric composition, measured included: Pr = 31.0 μC/cm2, Ec = 25.0 kV/cm, d33 = 340 pC/N, d33 * = 896 pm/V, and a bipolar electromechanical strain of 0.25 %. From these data, the Curie temperature was TC = 370 °C and the depoling temperature was TD = 325 °C. Processing ceramics with excess bismuth improved the low field piezoelectric coefficients with a maximum of d33 = 445 pC/N, while increasing the lead content increased the transition temperatures. The depoling and Curie temperatures of all compositions were measured to be between 275 and 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Valasek, Phys Rev 17, 475–481 (1921)

    Article  CAS  Google Scholar 

  2. K. Yamakawa, K. Imai, O. Arisumi, T. Arikado, M. Yoshioka, T. Owada, K. Okumura, Jpn. J. Appl. Phys. 41, 2630–2634 (2002)

    Article  CAS  Google Scholar 

  3. L.F. Malmonge, J.A. Malgonge, W.K. Sakamoto, Mater Res 6, 469–473 (2003)

    Article  CAS  Google Scholar 

  4. N. Makki, R. Pop-Iliev, Microsyst Technol 18, 1201–1212 (2012)

    Article  Google Scholar 

  5. S. Matsushita, I. Kanno, K. Adachi, R. Yokokawa, H. Kotera, Microsyst Technol 18, 765–771 (2012)

    Article  CAS  Google Scholar 

  6. R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl Acoust 41, 299 (1994)

    Article  Google Scholar 

  7. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111–124 (2007)

    CAS  Google Scholar 

  8. Y. Jiang, Y. Jiang, W. Shi, L. Li, Q. Chen, X. Yue, D. Xiao, J. Zhu, Ferroelectrics 380, 130–134 (2009)

    Article  CAS  Google Scholar 

  9. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971)

    Google Scholar 

  10. G.H. Haertling, J. Am, Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  11. A. Sehirlioglu, A. Sayir, F. Dynys, J. Am, Ceram. Soc. 93, 1718–1724 (2010)

    CAS  Google Scholar 

  12. T. Leist, J. Chen, W. Jo, E. Aulbach, J. Suffner, J. Rödel, J. Am, Ceram. Soc. 95, 711–715 (2012)

    Article  CAS  Google Scholar 

  13. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.-E. Park, Jpn. J. Appl. Phys. 40, 5999–6002 (2001)

    Article  CAS  Google Scholar 

  14. R.E. Eitel, S.J. Zhang, T.R. Shrout, C.A. Randall, J. Appl, Phys. 96, 2828–2831 (2004)

    CAS  Google Scholar 

  15. R.E. Eitel, C.A. Randall, T.R. Shrout, S.-E. Park, Jpn. J. Appl. Phys. 41, 2099–2104 (2002)

    Article  CAS  Google Scholar 

  16. C.J. Stringer, T.R. Shrout, C.A. Randall, I.M. Reaney, J Appl Phys 99, 0241061 (2006)

    Article  Google Scholar 

  17. S.J. Zhang, C.A. Randall, T.R. Shrout, Appl Phys Lett 83, 3150–3152 (2003)

    Article  CAS  Google Scholar 

  18. A. Sehirlioglu, A. Sayir, F. Dynys, J. Appl, Phys. 106, 0141021–0141027 (2009)

    Google Scholar 

  19. Y. Shimojo, R. Wang, T. Sekiya, T. Nakamura, L.E. Cross, Ferroelectrics 284, 121–128 (2003)

    Article  CAS  Google Scholar 

  20. C.A. Randall, R.E. Eitel, T.R. Shrout, D.I. Woodward, I.M. Reaney, J. Appl, Phys. 93, 9271–9274 (2003)

    CAS  Google Scholar 

  21. T. Takenaka, M. Yamada, Jpn. J. Appl. Phys. 32, 4218–4222 (1993)

    Article  CAS  Google Scholar 

  22. S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randall, J. Appl, Phys. 98, 0341081–0341084 (2005)

    Google Scholar 

  23. J. Chen, X. Sun, J. Deng, Y. Liu, J. Li, X. Xing, J Appl Phys 105, 044105 (2009)

    Article  Google Scholar 

  24. M.R. Suchomel, P.K. Davies, Appl Phys Lett 86, 2629051–2629053 (2005)

    Article  Google Scholar 

  25. S. Sharma, D.A. Hall, J. Mater, Sci.: Mater. Electron. 21, 405–409 (2010)

    Article  CAS  Google Scholar 

  26. T. Sebastian, I. Sterianou, D.C. Sinclair, A.J. Bell, D.A. Hall, I.M. Reaney, J. Electroceram. 25, 130–134 (2010)

    Article  CAS  Google Scholar 

  27. I. Sterianou, I.M. Reaney, D.C. Sinclair, D.I. Woodward, D.A. Hall, A.J. Bell, T.P. Comyn, Appl Phys Lett 87, 242901 (2005)

    Article  Google Scholar 

  28. I. Sterianou, D.C. Sinclair, I.M. Reaney, T.P. Comyn, A.J. Bell, J Appl Phys 106 (2009)

  29. T.Y. Ansell, D.P. Cann, Mater Lett 80, 87–90 (2012)

    Article  CAS  Google Scholar 

  30. Y. Inaguma, A. Miyaguchi, M. Yoshida, T. Katsumata, Y. Shimojo, R. Wang, T. Sekiya, J. Appl, Phys. 95, 231–235 (2004)

    CAS  Google Scholar 

  31. R.E. Eitel, T.R. Shrout, C.A. Randall, J Appl Phys 99, 124110 (2006)

    Article  Google Scholar 

  32. ANSI/IEEE 176-1987, IEEE Standard on Piezoelectricity, IEEE, New York, 1987

  33. Standard Test Methods for Determining Average Grain Size, American Society for Testing and Materials, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States, 2010

  34. A. Sehirlioglu, A. Sayir, F. Dynys, J. Am, Ceram. Soc. 91, 2910–2916 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge this work was supported in part through NASA/Oregon Space Grant Consortium, grant NNX10AK68.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy Y. Ansell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansell, T.Y., Cann, D.P. Piezoelectric properties of the high temperature MPB xPbTiO3 - (1−x)[BiScO3 + Bi(Ni1/2Ti1/2)O3] composition. J Electroceram 31, 159–167 (2013). https://doi.org/10.1007/s10832-013-9837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9837-5

Keywords

Navigation