Skip to main content
Log in

Determination of optical band gap of ZnO:ZnAl2O4 composite semiconductor nanopowder materials by optical reflectance method

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

ZnO:ZnAl2O4 composite semiconductor nanopowder materials were synthesized by sol gel method. X-ray diffraction results reveal that Al doped ZnO samples have a polycrystalline hexagonal structure with a = 3.2506 Å, c = 5.2079 Å lattice parameters. The crystallite size of the ZnO samples is decreased with increasing Al content. Atomic force microscope results indicate the presence of micro/nanohexagons with different sizes from 128 to 166 nm. Optical band gap of the ZnO samples is decreased and reaches a low value of 2.82 eV for 20 % Al. The electrical conductivity dependence of temperature confirms that ZnO:ZnAl2O4 composite semiconductor nanopowder materials exhibit semiconductor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R. Islam, J. Podder, Cryst. Res. Technol. 44, 286–292 (2009). doi:10.1002/crat.200800326

    Article  CAS  Google Scholar 

  2. Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821 (2003)

    Article  CAS  Google Scholar 

  3. C. Jagadish, S.J. Pearton (eds.), Zinc oxide bulk, thin films and nanostructures processing, properties and applications (Elsevier, UK, 2006)

    Google Scholar 

  4. N.H. Nickel, E. Terukov (eds.), Zinc oxide-a material for micro and optoelectronic applications (Springer, Netherlands, 2005)

    Google Scholar 

  5. J.G.E. Gardeniers, Z.M. Rittersma, G.J. Burger, J. Appl. Phys. 83, 7844 (1998)

    Article  CAS  Google Scholar 

  6. Y.L. Tsai, C.L. Huang, C.C. Wei, J. Mater. Sci. Lett. 4, 1305–1307 (1985). doi:10.1007/BF00720087

    Article  CAS  Google Scholar 

  7. M. de la L. Olvera, A. Maldonado, R. Asomoza, M. Mele´ndez-Lira, J. Mater. Sci. Mater. Electro. 11, 1–5 (2000). doi:10.1023/A:1008973800554

    Article  Google Scholar 

  8. J. Zhou, N. Xu, Z.L. Wang, Adv. Mater. 18, 2432–2435 (2006)

    Article  CAS  Google Scholar 

  9. Y. Ke, Z. Yongsheng, X. Rongli, O. Shixi, L. Dongmei, L. Laiqiang, Z. Ziqiang, M. Jin, X. Shijie, H. Shenghao, G. Haoran, Mater. Lett. 59, 1866–1870 (2005). doi:10.1016/j.matlet.2005.02.001

    Article  Google Scholar 

  10. J. Ma, S. Xie, S. Han, H. Geng, Mater. Lett. 59, 1866–1870 (2005). doi:10.1016/j.matlet.2005.02.001

    Article  Google Scholar 

  11. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270–3272 (1998)

    Article  CAS  Google Scholar 

  12. S.R. Dhage, R. Pasricha, V. Ravi, Mater. Lett. 59, 779 (2005)

    Article  CAS  Google Scholar 

  13. Kumar, S. Ashok, Chen, Shen-Ming, Anal. Lett. 41, 2, 141–58 (2008)

  14. W.-T. Chang, Y.-C. Chen, R.-C. Lin, C.-C. Cheng, K.-S. Kao, B.-R. Wu, Y.-C. Huang, Thin Solid Films 519, 4687–4693 (2011)

    Google Scholar 

  15. Y. Qin, X. Wang, Z.L. Wang, Nature 451(7180), 809–813 (2008). doi:10.1038/nature06601. PMID 18273015

    Article  CAS  Google Scholar 

  16. F. Yakuphanoglu, J. Alloys Compd. 494, 451 (2010)

    Article  CAS  Google Scholar 

  17. C.M. Bagnall, J. Zarzycki, J. Non-Cryst. Solids 121, 221 (1990)

    Article  CAS  Google Scholar 

  18. L. Spanhel, E. Arpac, H. Schmidt, J. Non-Cryst. Solids 47 & 148, 657 (1992)

    Article  Google Scholar 

  19. L. Spanhel, M. Anderson, J. Am. Chem. Soc. 112, 2278 (1990)

    Article  CAS  Google Scholar 

  20. L. Spanhel, M. Anderson, J. Am. Chem. Soc. 113, 2826 (1990)

    Article  Google Scholar 

  21. K.I. Kang, A.D. Kepner, Y.Z. Hu, S.W. Koch, N. Peyghambarian, C.Y. Li, Appl. Phys. Lett. 64, 1487 (1994)

    Article  CAS  Google Scholar 

  22. J. Fick, G. Vitrant, A. Martucci, M. Guglielmi, S. Pelli, G.C. Righini, Nonlinear Opt. 12, 203 (1995)

    CAS  Google Scholar 

  23. F. Yakuphanoglu, J. Alloy Compd. 507, 184–189 (2010)

    Google Scholar 

  24. M.S. Tokumoto, S.H. Pulcineli, C.V. Santilli, V. Briois, J. Phys. Chem. B107, 568 (2003)

    Google Scholar 

  25. S.Y. Chu, T.M. Yan, S.L. Chen, Ceram. Int. 26, 733 (2000)

    Article  CAS  Google Scholar 

  26. C.E. Benouis, M. Benhaliliba, A. Sanchez Juarez, M.S. Aida, F. Chami, F. Yakuphanoglu, J. of Alloys and Compounds 490, 62–67 (2010)

    Article  CAS  Google Scholar 

  27. M. Caglar, Y. Caglar, S. Ilican, Phys. Status Solidi C 4(3), 1337–1340 (2007). doi:10.1002/pssc200673744

    Article  CAS  Google Scholar 

  28. A.E. Giannakas, T.C. Vaimakis, A.K. Ladavos, P.N. Trikalitis, P.J. Pomonis, J. Colloid Interface Sci. 259, 244–253 (2003)

    Article  CAS  Google Scholar 

  29. C. Aydın, M.S. Abd El-sadek, Kaibo Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447–452 (2013)

    Google Scholar 

  30. W. Run, W. Jun, C. Xie, J. Zhang, A. Wang, Mater. Sci. Eng. A328, 196–200 (2002)

    Google Scholar 

  31. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 2353 (2008)

    Article  CAS  Google Scholar 

  32. M. Benhaliliba, C.E. Benouis, M.S. Aida, F. Yakuphanoglu, A. Sanchez Juarez, J. Sol–gel Sci. Technol. 55, 335–342 (2010)

    Google Scholar 

Download references

Acknowledgments

Thanks are due to the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, for facilitating and support for the research group “Advances in composites, Synthesis and applications”. This work is as a result of international collaboration of the group with Prof. F. Yakuphanoglu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yakuphanoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydın, C., Benhaliliba, M., Al-Ghamdi, A.A. et al. Determination of optical band gap of ZnO:ZnAl2O4 composite semiconductor nanopowder materials by optical reflectance method. J Electroceram 31, 265–270 (2013). https://doi.org/10.1007/s10832-013-9829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9829-5

Keywords

Navigation