Skip to main content
Log in

Structure and electrochemical performance of LiFexNi1-xO2 (0.00 ≤ x ≤ 0.20) cathode materials for rechargeable lithium-ion batteries

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

LiFexNi1-xO2 (0.00 ≤ x ≤ 0.20) nanoparticles were synthesized by sol–gel method using aqueous solution of metal nitrate precursor at 600 °C for 10 h. Structure and physical properties were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscope (TEM) and X-ray photoelectron microscopy (XPS) analysis. XRD studies revealed a well defined layer structure and a linear variation of lattice parameters with the substitution of Fe confirms phase pure compounds in a rhombohedral structure for all the materials. The surface morphology and particle size changes brought about by the substitution of Fe in LiFe0.15Ni0.85O2 using SEM and TEM analysis. Electrochemical properties of the as prepared LiFexNi1-xO2/Li/LiPF6 in assembled cells were studied by charge/discharge, cyclic performance and different discharge rates. LiFe0.15Ni0.85O2 shows better electrochemical properties than LiNiO2 with the highest charge/discharge capacity (214/191 mAh/g) discharge rate of 0.5-C among LiFexNi1-xO2 (0.00 ≤ x ≤ 0.20). LiFe0.15Ni0.85O2 was superior electrochemical properties, such as high charge/discharge capacity, high coulombic efficiency and low irreversible capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. McKinnon, S. Colson, J. Electrochem. Soc. 138, 2859 (1991)

    Article  CAS  Google Scholar 

  2. A.R. Armstrong, P.G. Bruce, Lett. Nature 381, 499 (1996)

    Article  CAS  Google Scholar 

  3. D.S. Ahn, M.Y. Song, J. Electrochem. Soc. 147(3), 874 (2000)

    Article  CAS  Google Scholar 

  4. K. Ozawa, Solid State Ionics 69, 212 (1994)

    Article  CAS  Google Scholar 

  5. J.R. Dahn, U. von Sacken, M.W. Juzkow, H.A. Janaby, J. Electrochem. Soc. 138, 2207 (1991)

    Article  CAS  Google Scholar 

  6. J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mekinnon, S. Colsons, J. Electrochem. Soc. 38, 2859 (1991)

    Article  Google Scholar 

  7. J. Kim, B.H. Kim, Y.H. Baik, P.K. Chang, H.S. Park, K. Amine, J. Power Sources 158, 641–645 (2006)

    Article  CAS  Google Scholar 

  8. Y.P. Wu, E. Rahm, R. Holze, Electrochim. Acta 47, 3491 (2002)

    Article  CAS  Google Scholar 

  9. H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, J. Solid State Electrochem. 8, 450 (2004)

    Article  CAS  Google Scholar 

  10. Y. Sun, P. Wan, J. Pan, C. Xu, X. Liu, Solid State Ionics 177, 1173 (2006)

    Article  CAS  Google Scholar 

  11. L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Prog. Mater. Sci. 50, 881 (2005)

    Article  CAS  Google Scholar 

  12. T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc. 140, 1563 (1993)

    Google Scholar 

  13. H. Arai, S. Okada, Y. Sakurai, J. Yamaki, Solid State Ionics 109, 295 (1998)

    Article  CAS  Google Scholar 

  14. C.C. Chang, J.Y. Kim, P.N. Kumta, J. Electrochem. Soc. 147, 1722 (2000)

    Article  CAS  Google Scholar 

  15. C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann, C. Delmas, J. Electrochem. Soc. 147, 2061 (2000)

    Article  CAS  Google Scholar 

  16. H. Arai, S. Okada, Y. Sakurai, J. Yamaki, J. Electrochem. Soc. 144, 3117 (1997)

    Article  CAS  Google Scholar 

  17. J. Cho, H.S. Jung, Y.C. Park, G.B. Kim, H.S. Lim, J. Electrochem. Soc. 147, 15 (2000)

    Article  CAS  Google Scholar 

  18. K.K. Lee, K.B. Kim, J. Electrochem. Soc. 147, 1709 (2000)

    Article  CAS  Google Scholar 

  19. Y. Nitta, K. Okamura, K. Haraguchi, S. Kobayashi, A. Ohta, J. Power Sources 54, 511–515 (1995)

    Article  CAS  Google Scholar 

  20. T. Ohzuku, A. Ueda, M. Kouguchi, J. Electrochem. Soc. 142, 4033 (1995)

    Article  CAS  Google Scholar 

  21. J.N. Reimers, E. Rossen, C.D. Jones, J.R. Dahn, Solid State Ionics 61, 335 (1993)

    Article  CAS  Google Scholar 

  22. P. Mohan, K. Arunsunai Kumar, G. Paruthimal Kalaignan, V.S. Muralidharan, J. Solid State Electrochem. 16, 3695–3702 (2012)

    Article  CAS  Google Scholar 

  23. P. Mohan, G. Paruthimal Kalaignan, V.S. Muralidharan, J. Nanosci. Nanotech. 12, 7052–7059 (2012)

    Article  CAS  Google Scholar 

  24. Y. Gao, M.Y. Yakovleva, W.B. Ebner, Electrochem. Solid State Lett. 1, 117 (1998)

    Article  CAS  Google Scholar 

  25. A. Yu, G.V. Subba Rao, B.V.R. Chowdari, Solid State Ionics 135, 131 (2000)

    Article  CAS  Google Scholar 

  26. R. Kanno, T. Shirane, Y. Inaba, Y. Kawamoto, J. Power Sources 68, 145 (1997)

    Article  CAS  Google Scholar 

  27. G. Prado, E. Suard, L. Fournes, C. Delmas, J. Mater. Chem. 10, 2553 (2000)

    Article  CAS  Google Scholar 

  28. E. Chappel, G. Chouteau, G. Prado, C. Delmas, Solid State Ionics 159, 273 (2003)

    Article  CAS  Google Scholar 

  29. I. Saadoune, C. Delmas, J. Mater. Chem. 6, 193 (1996)

    Article  CAS  Google Scholar 

  30. C. Delmas, I. Saadoune, Solid State Ion. 53–56, 370 (1992)

    Article  Google Scholar 

  31. E. Zhecheva, R. Stoyanova, Solid State Ion. 66, 143 (1993)

    Article  CAS  Google Scholar 

  32. J.N. Reimers, J.R. Dalin, J. Electrochem. Soc. 139, 2091 (1992)

    Article  CAS  Google Scholar 

  33. C. Delmas, I. Saadoune, A. Rougier, J. Power Sources 43–44, 595 (1993)

    Article  Google Scholar 

  34. A. Alcantara, J. Morales, J.L. Tirado, R. Stoyanova, E. Zhecheva, J. Electrochem. Soc. 142, 3997 (1995)

    Article  CAS  Google Scholar 

  35. C. Delmas, in Lithium batteries, vol. 5, ed. by G. Pistoia (Elsevier, Amsterdam, 1994)

    Google Scholar 

  36. R.K.B. Gover, R. Kanno, B.J. Mitchell, A. Hirano, Y. Kawamoto, J. Power Sources 90, 82 (2000)

    Article  CAS  Google Scholar 

  37. D.G. Lee, R.K. Gupta, Y.S. Cho, K.T. Hwang, J. Appl. Electrochem. 39, 671–679 (2009)

    Article  CAS  Google Scholar 

  38. R. Sathiyamoorthi, T. Vasudevan, Electrochem. Commun. 9, 416–424 (2007)

    Article  CAS  Google Scholar 

  39. J. Morales, C.P. Vicente, J.L. Tirado, Mat. Res. Bull. 25, 623 (1990)

    Article  CAS  Google Scholar 

  40. J. Cho, B. Park, J. Power sources 92, 35–39 (2001)

    Article  CAS  Google Scholar 

  41. F. Lian, M. Gao, W.H. Qiu, P. Axmann, M.W. Mehrens, J. Applied Electrochem. 42, 409 (2012)

    Article  CAS  Google Scholar 

  42. J. Morales, J.S. Pena, R. Trocoli, S. Franger, E.R. Castellon, Electrochim. Acta 53, 6366 (2008)

    Article  CAS  Google Scholar 

  43. K.S. Kim, N. Winograd, Surf. Sci. 43, 625 (1974)

    Article  CAS  Google Scholar 

  44. C. Pouilliric, L. Crroguennec, P. Biensen, P. Willmann, C. Delmas, J. Electrochem. Soc. 147(6), 2061–2069 (2000)

    Article  Google Scholar 

  45. X.R. Ye, D.Z. Jia, J.Q. Yu, X.Q. Xin, Z. Xue, Advanced Materials 11, 941–942 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to Department of Physics, Alagappa University Karaikudi for providing the XRD analysis to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paruthimal Kalaignan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, P., Kalaignan, G.P. Structure and electrochemical performance of LiFexNi1-xO2 (0.00 ≤ x ≤ 0.20) cathode materials for rechargeable lithium-ion batteries. J Electroceram 31, 210–217 (2013). https://doi.org/10.1007/s10832-013-9815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9815-y

Keywords

Navigation