Skip to main content
Log in

Effect of sintering temperature on microstructure and piezoelectric properties of Pb-free BiFeO3–BaTiO3 ceramics in the composition range of large BiFeO3 concentrations

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Lead-free (1-x)BiFeO3xBaTiO3 [(1-x)BF-xBT] piezoelectric ceramics in the range of large BF concentrations were prepared by conventional oxide-mixed method at various sintering temperatures. The sintering temperatures have a significant effect on the microstructure of the ceramics, and the composition has a remarkable effect on optimal sintering temperature of the ceramics, which are closely related with piezoelectric properties. The grain size increased with increasing sintering temperature and the optimal sintering temperature increased with increasing BT content. The ceramics with x = 0.275 sintered at 990 °C exhibit enhanced electrical properties of d 33 = 136pC/N and k p = 0.312 due to the polarization rotation mechanisms at MPB and desired microstructure. These results show that the ceramic with x = 0.275 is a promising lead-free high-temperature piezoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Academic, London, (1971)

  2. Y. Chen, J. Zhu, D. Xiao, B. Qin, Y. Jiang, Mater. Lett. 62, 3567 (2008)

    Article  CAS  Google Scholar 

  3. F. Gao, R. Hong, J. Liu, Z. Li, L. Cheng, C. Tian, J. Alloys Compd. 475, 619 (2009)

    Article  Google Scholar 

  4. S. Chen, X.L. Dong, C.L. Mao, F. Cao, J. Am. Ceram. Soc. 89, 3270 (2006)

    Article  CAS  Google Scholar 

  5. R.E. Eitel, C.A. Randall, T.R. Shout, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  CAS  Google Scholar 

  6. R.E. Eitel, C.A. Randall, T.R. Shrout, Jpn. J. Appl. Phys. 41, 2099 (2002)

    Article  CAS  Google Scholar 

  7. M.R. Suchomel, P.K. Davies, J. Appl. Phys. 96, 4405 (2004)

    Article  CAS  Google Scholar 

  8. D.I. Woodward, L.M. Reaney, R.E. Eitel, J. Appl. Phys. 94, 3313 (2003)

    Article  CAS  Google Scholar 

  9. J. Cheng, N. Li, L.E. Cross, J. Appl. Phys. 94, 5153 (2003)

    Article  CAS  Google Scholar 

  10. F. Gao, R. Hong, J. Liu, J. Euro. Ceram. Soc. 29, 1687 (2009)

    Article  Google Scholar 

  11. S. Zhang, R. Xia, C.A. Randall, T.R. Shrout, R.R. Duan, R.F. Speyer, J. Mater. Res. 20, 2067 (2005)

    Article  CAS  Google Scholar 

  12. S.M. Choi, C.J. Striger, T.R. Shrout, C.A. Randall, J. Appl. Phys. 98, 034108 (2005)

    Article  Google Scholar 

  13. J. Cheng, R. Eitel, L.E. Cross, J. Am. Ceram. Soc. 86, 2111 (2003)

    Article  CAS  Google Scholar 

  14. Z. Yao, L. Peng, H. Liu, H. Hao, M. Cao, Z. Yu, J. Alloys Compd. 509, 5637 (2011)

    Article  CAS  Google Scholar 

  15. R. Rai, A. Kholkin, S. Pandey, N.K. Singh, J. Alloys Compd. 488, 459 (2009)

    Article  CAS  Google Scholar 

  16. H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, J. Am. Ceram. Soc. 92, 110 (2009)

    Article  CAS  Google Scholar 

  17. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  CAS  Google Scholar 

  18. S.O. Leontsevw, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  19. C.C. Huang, D.P. Cann, J. Appl. Phys. 104, 024117 (2008)

    Article  Google Scholar 

  20. Q. Zhang, Z. Li, F. Li, Z. Xu, J. Am. Ceram. Soc. 94, 4335 (2011)

    Article  CAS  Google Scholar 

  21. B. Xiong, H. Hao, S. Zhang, H. Liu, M. Cao, J. Am. Ceram. Soc. 94, 3412 (2011)

    Article  CAS  Google Scholar 

  22. S. Wada, K. Yamato, P. Pulpan, N. Kumada, B.Y. Lee, T. Iijima, C. Moriyoshi, Y. Kuroiwa, J. Appl. Phys. 108, 094114 (2010)

    Article  Google Scholar 

  23. I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimada, Jpn. J. Appl. Phys. 50, 09ND07 (2011)

    Article  Google Scholar 

  24. Y.J. Lee, J.S. Kim, S.H. Han, H.-W. Kang, H.-G. Lee, C. Il Cheon, J. Korean Phys. Soc. 61, 947 (2012)

    Article  CAS  Google Scholar 

  25. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang, W. Li, Mater. Res. Bull. 47, 4233 (2012)

    Article  CAS  Google Scholar 

  26. Q. Zhou, C. Zhou, H. Yang, G. Chen, W. Li, H. Wang, J. Am. Ceram. Soc. 95, 3889 (2012)

    Article  CAS  Google Scholar 

  27. C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, J. Chen, W. Li, H. Wang, Appl. Phys. Lett. 101, 032901 (2012)

    Article  Google Scholar 

  28. R. Zuo, S. Su, Y. Wu, J. Fu, M. Wang, L. Li, Mater. Chem. Phys. 110, 311 (2008)

    Article  CAS  Google Scholar 

  29. F. Rubio-Marcos, P. Marchet, T. Merle-Méjean, J.F. Fernandez, Mater. Chem. Phys. 123, 91 (2008)

    Article  Google Scholar 

  30. C.A. Randall, N. Kim, J.-P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  CAS  Google Scholar 

  31. W. Cao, C.A. Randall, J. Phys. Chem. Solids 57, 1499 (1996)

    Article  CAS  Google Scholar 

  32. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  33. J. Iniguez, D. Vanderbilt, L. Bellaiche, Phys. Rev. B 67, 224107 (2003)

    Article  Google Scholar 

  34. C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li, H. Wang, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-012-0996-y

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61261012) Guangxi Science Foundation (2010GXNSFD013007 and 2010GXNSFB013010) and Guangxi Education Department Foundation (201012MS083) and Guangxi Key Laboratory of Information Materials (1110908-09-Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changrong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cen, Z., Yang, H., Zhou, C. et al. Effect of sintering temperature on microstructure and piezoelectric properties of Pb-free BiFeO3–BaTiO3 ceramics in the composition range of large BiFeO3 concentrations. J Electroceram 31, 15–20 (2013). https://doi.org/10.1007/s10832-013-9803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9803-2

Keywords

Navigation