Skip to main content

Advertisement

Log in

Designing a piezoelectric energy harvesting system for the superconductor Maglev

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In order to convert the lateral vibration of the superconductor Maglev bogie system into usable energy, an energy harvesting system was designed and optimized by applying steel balls for piezoelectric material to effectively convert mechanical energy into electrical energy. Experiments were conducted to investigate the effect of the vibration displacement (0.2, 0.4, 0.6, 0.8, 1.0 mm), vibration frequency (2, 4, 6, 8, 10 Hz) and vibration direction (x-axis and y-axis) for each different size of steel ball (12.7, 15.8, 17.0, or 20.0 mm). The following experimental results were found, first, as the vibration displacement increased, the average power output also increased. The total weight of the balls affected the results at higher vibration displacements. Second, as the vibration frequency increased, larger balls tended to have a jump point in average power output, with a general trend of increasing average power output. Finally, the x-axis direction effect had more distinct differences for individual ball weight dependences due to the mobility factor of the balls, considering calculated total weight and total area percent. After the optimum condition was found, the wireless sensor was connected and the experimental data suggested the possibility of applying piezoelectric materials to exploit the ambient and random vibrations of a superconductor Maglev bogie system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Shirakuni, K. Takahashi, Developments and running tests of the JR-MAGLEV. STECH Int. Symp. 19 (2003)

  2. E. Suzuki, K. Watanabe, H. Hoshino, T. Yonezu, M. Nagai, J. Mech. Syst. Transp. Logist. 3, 196 (2010)

    Article  Google Scholar 

  3. M. Ogata, T. Okino, K. Ikeda, T. Herai, M. Igarashi, T. Furusawa, Q. Rep. Railw. Tech. Res. Inst. 41, 79 (2000)

    Google Scholar 

  4. K. Waki, H. Seino, K. Nagashima, J. Mech. Syst. Transp. Logist. 3, 187 (2002)

    Article  Google Scholar 

  5. H. Seino, M. Iwamatsu, T. Herai, Y. Yoshino, T. Yamamoto, JSME Int. J. 47, 457 (2004)

    Google Scholar 

  6. S. Sakamoto, H. Watanabe, T. Takizawa, E. Suzuki, M. Terai, IEEE Trans. Appl. Supercond. 7 (1997)

  7. K. Takahashi, SPEEDAM 2008, Int. Symp. Power Electron. Electr. Drives Autom. Motion. 1013 (2008)

  8. H. Takizawa, H. Takami, H. Yohioka, K. Wanatabe, H. Ohima, M. Adachi, Q. Rep. Railw. Tech. Res. Inst. 41, 68 (2000)

    Google Scholar 

  9. Y. Sakamoto, T. Kashiwagi, E. Suzuki, K. Yamamoto, Q. Rep. Railw. Tech. Res. Inst. 47, 18 (2006)

    Google Scholar 

  10. K. Watanabe, H. Yoshioka, E. Suzuki, T. Tohtake, M. Nagai, J. Syst. Des. Dyn. 1, 593 (2007)

    Google Scholar 

  11. H. Hoshino, E. Suzuki, K. Watanabe, Q. Rep. Railw. Tech. Res. Inst. 49, 113 (2008)

    Google Scholar 

  12. E. Suzuki, J. Shirasaki, K. Watanabe, H. Hoshino, M. Nagai, J. Syst. Des. Dyn. 1, 3 (2008)

    Google Scholar 

  13. S. Beeby, M. Tudor, N. White, Meas. Sci. Technol. 17, R175 (2006)

    Article  CAS  Google Scholar 

  14. S. Lin, B. Lee, W. Wu, C. Lee, IEEE Int. Ultrason. Symp. Proc. 755 (2009)

Download references

Acknowledgment

This work was supported by the Future Rail Technology Development Project (KICTEP) grant funded by the Ministry of Land, Transport and Maritime Affairs, Republic of Korea (Development of piezoelectric harvesting system for application of train).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Sung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, D., Jang, H., Kim, S.B. et al. Designing a piezoelectric energy harvesting system for the superconductor Maglev. J Electroceram 31, 1–7 (2013). https://doi.org/10.1007/s10832-013-9794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9794-z

Keywords

Navigation