Journal of Electroceramics

, Volume 30, Issue 3, pp 159–165 | Cite as

Effects of transition metal doping and surface treatment to improve the electrochemical performance of Li2MnO3

  • Soo Kim
  • Jae-Kyo Noh
  • Seungho Yu
  • Wonyoung Chang
  • Kyung Yoon ChungEmail author
  • Byung-Won ChoEmail author


A novel strategy to improve the electrochemical performance of Li2MnO3 using transition metal doping by the mechanochemical process is proposed. Li2MnO3 precursors are treated with transition metal containing chemicals in the mechanochemical process, followed by heat treatment. Cr containing Li2MnO3, with only 1 mol% Cr doping, exhibits unique electrochemical properties with a large initial discharge capacity of 234.9 mAh g−1, which is superior to the 205.0 mAh g−1 of pristine Li2MnO3, and all other transition-metal containing oxides. The structures of Li2MnO3 and Li2MnO3 with the transition metal element doping (TM-Li2MnO3) are studied by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the electrochemical characteristics are further investigated using electrochemical impedance spectroscopy (EIS) measurements.


Lithium ion battery Li2MnO3 Mechanochemical process Doping Surface treatment 



This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government(MEST)" (NRF-2011-C1AAA001-0030538) and by the Global Research Laboratory Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science and Technology (MEST) (grant number: 2011–00115).


  1. 1.
    J.M. Tarascon, M. Armand, Nature 414, 359 (2001)CrossRefGoogle Scholar
  2. 2.
    M.M. Thackeray, S.H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, J. Mater. Chem. 17, 3112 (2007)CrossRefGoogle Scholar
  3. 3.
    K.M. Shaju, P.G. Bruce, Adv. Mater. 18, 2330 (2006)CrossRefGoogle Scholar
  4. 4.
    M.M. Thackeray, P.J. Johnson, L.A. de Picciotto, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 19, 179 (1984)CrossRefGoogle Scholar
  5. 5.
    A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)CrossRefGoogle Scholar
  6. 6.
    D.Y.W. Yu, K. Yanagida, Y. Kato, H. Nakamura, J. Electrochem. Soc. 156, A417 (2009)CrossRefGoogle Scholar
  7. 7.
    S.H. Kang, C.S. Johnson, J.T. Vaughey, K. Amine, M.M. Thackeray, J. Electrochem. Soc. 153, A1186 (2006)CrossRefGoogle Scholar
  8. 8.
    D.Y.W. Yu, K. Yanagida, J. Electrochem. Soc 158, A1015 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Tabuchi, Y. Nabeshima, K. Ado, M. Shikano, H. Kageyama, K. Tatsumi, J. Power Sources 174, 554 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Tabuchi, Y. Nabeshima, T. Takeuchi, K. Tatsumi, J. Imaizumi, Y. Nitta, J. Power Sources 195, 834 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, K. Tatsumi, J. Akimoto, H. Shibuya, J. Imaizumi, J. Power Sources 196, 3611 (2011)CrossRefGoogle Scholar
  12. 12.
    D. Mori, H. Sakaebe, M. Shikano, H. Kojitani, K. Tatsumi, Y. Inaguma, J. Power Sources 196, 6934 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Lu, J.R. Dahn, J. Electrochem. Soc. 149, A1454 (2002)CrossRefGoogle Scholar
  14. 14.
    H. Seo, E. Lee, C.W. Yi, K. Kim, J. Electrochem. Sci. Tech. 2, 180 (2011)CrossRefGoogle Scholar
  15. 15.
    H.M. Oh, J.Y. Kim, K.K. Lee, K.Y. Chung, K.B. Kim, J. Electrochem. Sci. Tech. 1, 45 (2010)CrossRefGoogle Scholar
  16. 16.
    J.M. Kim, J.H. Jeong, B.S. Jin, H.S. Kim, J. Electrochem. Sci. Tech. 2, 97 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Kim, C. Kim, J.K. Noh, S. Yu, S.J. Kim, W.Y. Chang, W.C. Choi, K.Y. Chung, B.W. Cho, J. Power Sources 220, 422 (2012)CrossRefGoogle Scholar
  18. 18.
    H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim, B.W. Cho, Electrochim. Acta 53, 7946 (2008)CrossRefGoogle Scholar
  19. 19.
    Y.U. Kim, B.W. Cho, H.J. Sohn, J. Electrochem. Soc. 152, A1475 (2005)CrossRefGoogle Scholar
  20. 20.
    S.G. Woo, J.H. Jung, H. Kim, M.G. Kim, C.K. Lee, H.J. Sohn, B.W. Cho, J. Electrochem. Soc. 153, A1979 (2006)CrossRefGoogle Scholar
  21. 21.
    S.H. Oh, S.H. Jeon, W.I. Cho, C.S. Kim, B.W. Cho, J. Alloys Compd. 452, 389 (2008)CrossRefGoogle Scholar
  22. 22.
    M.H. Kong, J.H. Noh, D.J. Byun, J.K. Lee, J. Electroceram. 23, 376 (2009)CrossRefGoogle Scholar
  23. 23.
    S.H. Kim, C.S. Kim, J. Electroceram. 23, 254 (2009)CrossRefGoogle Scholar
  24. 24.
    E. Jung, Y.J. Park, J. Electroceram. 29, 23 (2012)CrossRefGoogle Scholar
  25. 25.
    A.A. Arie, O.M. Vovk, J.O. Song, B.W. Cho, J.K. Lee, J. Electroceram 23, 248 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Center for Energy ConvergenceKorea Institute of Science and TechnologySeoulRepublic of Korea

Personalised recommendations