Skip to main content
Log in

Electrical and structural properties of Nb-doped SrTiO3 ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Niobium-doped strontium titanate synthesized via conventional solid-state reaction has been studied. Influence of niobium content on the lattice parameters and electrical conductivity has been reported. Various reduction conditions have been investigated. For samples reduced in hydrogen at 1400°C, a transition from thermally activated to metallic behavior has been observed. Maximum electrical conductivity (ca. 55 Scm−1 at 650°C) has been observed for the SrTi0.98Nb0.02O3-δ sample. The relation of electrical conductivity with the porosity of the samples has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.W. Fergus, Solid State Ion. 177, 1529–1541 (2006). doi:10.1016/j.ssi.2006.07.012

    Article  CAS  Google Scholar 

  2. K.C. Wincewicz, J.S. Cooper, J. Power Sources 140, 280–296 (2005). doi:10.1016/j.jpowsour.2004.08.032

    Article  CAS  Google Scholar 

  3. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. Mcevoy, M. Mogensen, S.C. Singhal, J. Vohs, Nature 3, 17–27 (2004). doi:10.1038/nmat1040

    Article  CAS  Google Scholar 

  4. C. Sun, U. Stimming, J. Power Sources 171, 247–260 (2007). doi:10.1016/j.jpowsour.2007.06.086

    Article  CAS  Google Scholar 

  5. A. Rachel, S.G. Ebbinghaus, M. Güngerich, P.J. Klar, J. Hanss, A. Weidenkaff, A. Reller, Thermochim. Acta 438, 134–143 (2005). doi:10.1016/j.tca.2005.08.010

    Article  CAS  Google Scholar 

  6. S. Tao, J.T.S. Irvine, Chem. Rec. 4, 83–95 (2004). doi:10.1002/tcr.20003

    Article  CAS  PubMed  Google Scholar 

  7. H. Kurokawa, L. Yang, C.P. Jacobson, L.C. De Jonghe, S.J. Visco, J. Power Sources 164, 510–518 (2007). doi:10.1016/j.jpowsour.2006.11.048

    Article  CAS  Google Scholar 

  8. S. Hashimoto, F.W. Poulsen, M. Mogensen, J. Alloy. Comp. 439, 232–236 (2007). doi:10.1016/j.jallcom.2006.05.138

    Article  CAS  Google Scholar 

  9. Q.X. Fu, S.B. Mi, E. Wessel, F. Tietz, J. Eur. Ceram. Soc. 28, 811–820 (2008). doi:10.1016/j.jeurceramsoc.2007.07.022

    Article  CAS  Google Scholar 

  10. S.Q. Hui, A. Petric, J. Electrochem. Soc. 149, J1–J10 (2002). doi:10.1149/1.1420706

    Article  CAS  Google Scholar 

  11. U. Balachandran, N.G. Eror, J. Electrochem. Soc. 129, 1021–1026 (1982)

    Article  CAS  Google Scholar 

  12. O. Odekirk, U. Balachandran, N.G. Eror, J.S. Blakemore, J. Am. Cer. Soc. 66, C22–C23 (1983)

    Article  CAS  Google Scholar 

  13. U. Balachandran, N.G. Eror, J. Am. Cer. Soc. 64, C75–C76 (1981)

    Article  CAS  Google Scholar 

  14. N.G. Eror, U. Balachandran, J. Solid. State Chem. 40, 85–91 (1981)

    Article  CAS  ADS  Google Scholar 

  15. R. Moos, S. Schollhammer, K.H. Härdtl, Appl. Phys. A. 65, 291–294 (1997). doi:10.1007/s003390050581

    Article  CAS  ADS  Google Scholar 

  16. T. Kolodiazhnyi, A. Petric, J. Electroceramics 15, 5–11 (2005)

    Article  CAS  Google Scholar 

  17. H. Zhao, F. Gao, X. Li, C. Zhang, Z. Zhao, Solid State Ionics 180, 193–197 (2009)

    Article  CAS  Google Scholar 

  18. P. Blennow, A. Hagen, K.K. Hansen et al., Solid State Ionics 179, 2047–205 (2008)

    Article  CAS  Google Scholar 

  19. J. Karczewski, B. Riegel, S. Molin, A. Winiarski, M. Gazda, P. Jasinski, L. Murawski, B. Kusz, J. Alloys Compd. 473, 496–499 (2009)

    Article  CAS  Google Scholar 

  20. P. Blennow, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Solid State Ionics 180, 63–70 (2009)

    Article  CAS  Google Scholar 

  21. F. Horikiri, N. Iizawa, L.Q. Han, K. Sato, K. Yashiro, T. Kawada, J. Mizusaki, Solid State Ionics 179, 2335–2344 (2008)

    Article  CAS  Google Scholar 

  22. R. Moos, K.H. Härdtl, J. Am. Ceram. Soc. 80, 2549–2562 (1997)

    Article  CAS  Google Scholar 

  23. A.A.L. Ferreira, J.C.C. Abrantes, J.A. Labrincha, J.R. Frade, J. European, Ceramic Society 19, 773–776 (1999)

    Article  CAS  Google Scholar 

  24. J.T.S. Irvine, P.R. Slater, P.A. Wright, Ionics 2, 213–216 (1996)

    Article  CAS  Google Scholar 

  25. X. Li, H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, Z. Zhu, J. Power, Sources 166, 47–52 (2007)

    Article  CAS  Google Scholar 

  26. R. Moos, K.H. Härdtl, J. Appl. Phys. 80, 393–400 (1996)

    Article  CAS  ADS  Google Scholar 

  27. P.R. Slater, D.P. Fagg, J.T.S. Irvine, J. Mater. Chem. 7, 2495–2498 (1997)

    Article  CAS  Google Scholar 

  28. X. Li, H. Zhao, F. Gao, N. Chen, N. Xu, Electrochem. Commun. 10, 1567–1570 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the project MNiSW N511 005 31/05/76.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Karczewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karczewski, J., Riegel, B., Gazda, M. et al. Electrical and structural properties of Nb-doped SrTiO3 ceramics. J Electroceram 24, 326–330 (2010). https://doi.org/10.1007/s10832-009-9578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9578-7

Keywords

Navigation