Skip to main content
Log in

Study of bulk and grain-boundary conductivity of Ln2+xHf2−xO7−δ (Ln = Sm-Gd; x = 0, 0.096) pyrochlores

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The electrical conductivity of new solid electrolytes Eu2.096Hf1.904O6.952 and Gd2Hf2O7 have been compared with those for different pyrochlores including titanates and zirconates Ln2+xМ2−xO7−δ (Ln = Sm-Lu; M = Ti, Zr; x = 0−0.81). Impedance spectroscopy data demonstrate that Eu2.096Hf1.904O6.952 and Gd2Hf2O7 synthesized from mechanically activated oxides have high ionic conductivity, comparable to that of their zirconate analogues. The bulk and grain-boundary components of conductivity in Sm2.096Hf1.904O6.952synth = 1600ºС), Eu2.096Hf1.904O6.952 and Gd2Hf2O7synth = 1670ºС) have been determined. The highest bulk conductivity is offered by the disordered pyrochlores prepared at 1600ºC and 1670ºC: ~1.5 × 10−4 S/cm for Sm2.096Hf1.904O6.952, 5 × 10−3 S/cm for Eu2.096Hf1.904O6.952 and 3 × 10−3 S/cm for Gd2Hf2O7 at 780ºС, respectively. The conductivity of the fluorite-like phases at the phase boundaries of the Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x ~ 0.286) solid solutions, as well as that of the high-temperature fluorite-like phases Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x = 0−0.286), is lower than the conductivity of the disordered pyrochlores Ln2+xМ2−xO7−δ (Ln = Eu, Gd; M = Zr, Hf; x = 0−0.096).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.P. van Dijk, K.J. de Vries, A.J. Burggraaf, Solid State Ion 9/10, 913 (1983). doi:10.1016/0167-2738(83)90110-8

    Article  Google Scholar 

  2. T. van Dijk, K.J. de Vries, A.J. Burggraaf, Phys. Status Solidi (a) 58, 115 (1980). doi:10.1002/pssa.2210580114

    Article  ADS  Google Scholar 

  3. T. Takahashi, H. Iwahara, Y. Nagai. J. Appl. Electrochem. 2, 97 (1972). doi:10.1007/BF00609125

    Article  CAS  Google Scholar 

  4. V.V. Kharton, A.A. Yaremchenko, E.N. Naumovich, F.M.B. Marques, J. Solid State Electrochem. 4, 243 (2000). doi:10.1007/s100080050202

    Article  CAS  Google Scholar 

  5. G.V.M. Kiruthika, K.V. Govindan Kutty, U.V. Varadarju, Solid State Ion. 110, 335 (1998). doi:10.1016/S0167-2738(98)00140-4

    Article  CAS  Google Scholar 

  6. B.J. Wuensch, K.W. Eberman, C. Heremans, E.M. Ku, P. Onnerud, E.M.E. Yeo, S.M. Hail, J.K. Stalick, J.D. Jorgensen, Solid State Ion. 129, 111 (2000). doi:10.1016/S0167-2738(99)00320-3

    Article  CAS  Google Scholar 

  7. K.J. Moreno, A.F. Fuentes, J. Garcia-Barriocanal, C. Leon, J. Santamaria. J. Solid State Chem. 179, 323 (2006). doi:10.1016/j.jssc.2005.09.036

    Article  CAS  ADS  Google Scholar 

  8. K.J. Moreno, M.A. Guevara-Liceaga, A.F. Fuentes, J. Garcia-Barriocanal, C. Leon, J. Santamaria. J. Solid State Chem. 179, 928 (2006). doi:10.1016/j.jssc.2005.12.015

    Article  CAS  ADS  Google Scholar 

  9. A.V. Shlyakhtina, M.V.Boguslavskii Knotko, S.Y. Stefanovich, I.V. Kolbanev, L.L. Larina, L.G. Shcherbakova, Solid State Ion. 178, 59 (2007). doi:10.1016/j.ssi.2006.11.001

    Article  CAS  Google Scholar 

  10. P.Y. Butyagin, I.K. Pavlichev, React. Solids 1, 361 (1986). doi:10.1016/0168-7336(86)80027-4

    Article  CAS  Google Scholar 

  11. D. Michel, M. Perez, Y. Jorba, R. Collongues, Mater. Res. Bull. 9, 1457 (1974). doi:10.1016/0025-5408(74)90092-0

    Article  CAS  Google Scholar 

  12. M.P. van Dijk, F.C. Mijlhoff, A.J. Burggraaf, J. Solid State Chem. 62, 377 (1986). doi:10.1016/0022-4596(86)90253-7

    Article  ADS  Google Scholar 

  13. T. Uehara, K. Koto, F. Kanamaru. Solid State Ion. 23, 137 (1987). doi:10.1016/0167-2738(87)90093-2

    Article  CAS  Google Scholar 

  14. A.V. Shlyakhtina, D.A. Belov, O.K. Karyagina, L.G. Shcherbakova. J. of Alloys and Compounds, published on line 25.12.2008

  15. H. Takamura, H.L. Tuller, Solid State Ion. 134, 67 (2000). doi:10.1016/S0167-2738(00)00715-3

    Article  CAS  Google Scholar 

  16. K.W. Eberman, B.J. Wuensch, J.D. Jorgensen, Solid State Ion. 148, 521 (2002). doi:10.1016/S0167-2738(02)00099-1

    Article  CAS  Google Scholar 

  17. A.V. Shlyakhtina, A.V. Knotko, M.V. Boguslavskii, S.Y. Stefanovich, D.V. Peryshkov, I.V. Kolbanev, L.G. Shcherbakova, Solid State Ion. 176, 2297 (2005). doi:10.1016/j.ssi.2005.06.005

    Article  CAS  Google Scholar 

  18. A.F. Fuentes, K. Boulahya, M. Maszka, U. Amador. Solid State Sci. 7, 343 (2005). doi:10.1016/j.solidstatesciences.2005.01.002

    Article  CAS  ADS  Google Scholar 

  19. M. Pruneda, E. Artacho. Phys. Rev. B 72, 08510 (2005). doi:10.1103/PhysRevB.72.085107

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Presidium of the Russian Academy of Sciences (program “Synthesis of Inorganic Substances with Controlled Properties and Fabrication of Related Functional Materials,” grant no. 18P/2009), the Russian Foundation for Basic Research (grant no. 07-03-00716), the Department of Materials Sciences of the Russian Academy of Sciences (program of the Basic Investigations of New Metal, Ceramic, Glass- and Composite-Materials and the Deutsche Forschungsgemeinschaft (grant no. CZ 436RUS17/96/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shlyakhtina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlyakhtina, A.V., Savvin, S.N., Levchenko, A.V. et al. Study of bulk and grain-boundary conductivity of Ln2+xHf2−xO7−δ (Ln = Sm-Gd; x = 0, 0.096) pyrochlores. J Electroceram 24, 300–307 (2010). https://doi.org/10.1007/s10832-009-9572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9572-0

Keywords

Navigation