Skip to main content

Advertisement

Log in

The electronic conductivity of Ba0.5Sr0.5Co x Fe1−x O3−δ (BSCF: x = 0 ∼ 1.0) under different oxygen partial pressures

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The electronic conductivity of sintered BSCF ceramics (Ba0.5Sr0.5Co x Fe1−x O3−δ, 0 x 1) was measured as a function of temperature up to 1273 K in air. The conductivity of BSC is thermally activated over 298–1273 K with an activation energy of 0.21 eV. The conductivity of BSF and BSCF (0.2 x 0.8) is thermally activated below ∼673 K with activation energies of 0.21 eV–0.40 eV. Above 673 K, the formation of oxygen vacancies results in a decrease in p-type carrier concentration and a decrease in electronic conductivity. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) was also measured under 10−5 atm ≤ pO2 ≤ 1 atm. Below ∼673 K, the electronic conductivity of BSCF 5582 shows no dependence on pO2. Above 673 K, the conductivity of BSCF5582 increases with increasing pO2 for pO2 ≥ 0.01 (p-type conduction) and decreases slightly with increasing pO2 for pO2 0.01 atm. The activation energy for conduction above ∼673 K and at pO2 ≥ 0.1 is ∼0.07 eV. Above ∼823K and at pO2 ≥ 0.01 atm, the activation energy for conduction is ∼0.2 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Shao, S.M. Halle, Nature 431, 170 (2004). doi:10.1038/nature02863

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Z. Shao, W. Yang, Y. Kong, H. Dong, J. Tong, G. Xiong, J. Membr. Sci. 172, 177 (2000). doi:10.1016/S0376-7388(00)00337-9

    Article  CAS  Google Scholar 

  3. H. Wang, Y. Cong, W.S. Wang, J. Membr. Sci. 210, 259 (2002). doi:10.1016/S0376-7388(02)00361-7

    Article  CAS  Google Scholar 

  4. S. McIntosh, J.F. Vente, W.G. Haije, D.H.A. Blank, H.J.M. Bouwmeester, Solid State Ion. 177, 1737 (2006). doi:10.1016/j.ssi.2006.03.041

    Article  CAS  Google Scholar 

  5. E. Girdauskaite, H. Ullmann, M. Al Doroukh, V. Vashook, M. Bulow, U. Guth, J. Solid State Electrochem. 11, 469 (2007). doi:10.1007/s10008-006-0175-2

    Article  CAS  Google Scholar 

  6. E. Bucher, A. Egger, P. Ried, W. Sitte, P. Holtappels, Solid State Ion. (2008). doi:10.1016/j.ssi.2008.01.089

  7. Z. Chen, R. Ran, W. Zhou, Z. Shao, S. Liu, Electrochim. Acta 52, 7343 (2007). doi:10.1016/j.electacta.2007.06.010

    Article  CAS  Google Scholar 

  8. P. Zeng, Z. Chen, W. Zhou, H. Gu, Z. Shao, S. Liu, J. Membr. Sci. 291, 148 (2007). doi:10.1016/j.memsci.2007.01.003

    Article  CAS  Google Scholar 

  9. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Solid State Ion. 76, 259 (1995). doi:10.1016/0167-2738(94)00244-M

    Article  CAS  Google Scholar 

  10. N. Grunbaum, L. Mogni, F. Prado, A. Caneiro, J. Solid State Chem. 177, 2350 (2004). doi:10.1016/j.jssc.2004.03.026

    Article  CAS  ADS  Google Scholar 

  11. B. Wei, Z. Lu, X. Huang, J. Miao, X. Sha, X. Xin et al., J. Eur. Ceram. Soc. 26, 2827 (2006). doi:10.1016/j.jeurceramsoc.2005.06.047

    Article  CAS  Google Scholar 

  12. L. Ge, W. Zhou, R. Ran, S. Liu, Z. Shao, W. Jin et al., J. Membr. Sci. 306, 318 (2007). doi:10.1016/j.memsci.2007.09.004

    Article  CAS  Google Scholar 

  13. L. Ge, R. Ran, K. Zhang, S. Liu, Z. Shao, J. Membr. Sci. (2008). doi:10.1016/j.memsci.2008.02.015

  14. W. Zhou, R. Ran, Z. Shao, W. Zhuang, J. Jia, H. Gu et al., Acta Mater. (2008). doi:10.1016/actamat.2008.02.002

  15. J. Ovenstone, J.-I. Jung, J.S. White, D.D. Edwards, S.T. Misture, J. Solid State Chem. 181, 576 (2008). doi:10.1016/j.jssc.2008.01.010

    Article  CAS  ADS  Google Scholar 

  16. S. Lee, Y. Lim, E.A. Lee, H.J. Hwang, J.-W. Moon, J. Power Sources 157, 848 (2006). doi:10.1016/j.jpowsour.2005.12.028

    Article  CAS  Google Scholar 

  17. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976). doi:10.1107/S0567739476001551

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the New York State Foundation for Science, Technology and Innovation, NYSTAR, under contract C030093. XRF analysis of the BSCF samples was kindly provided by Dr. Joon-Hyung Lee in Kyungpook National University, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen D. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, JI., Misture, S.T. & Edwards, D.D. The electronic conductivity of Ba0.5Sr0.5Co x Fe1−x O3−δ (BSCF: x = 0 ∼ 1.0) under different oxygen partial pressures. J Electroceram 24, 261–269 (2010). https://doi.org/10.1007/s10832-009-9567-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-009-9567-x

Keywords

Navigation