Skip to main content
Log in

State of stress in piezoelectric elements with interdigitated electrodes

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Finite element analyses have been performed on the representative volume element of piezoelectric elements with interdigitated electrodes (IDE). In these investigations the change of the piezoelectric material properties during polarization has been considered prior to additional service loads, e.g. mechanical loading. The numerical results obtained with a specially coded finite element routine are compared with a reference model given by the so called uniform field model. The model indicates stress concentrations at the tip of the finger electrode, which have been validated by experimental results. The modeling approach presented allows for a better understanding of the overall effects in piezoelectric materials with IDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Tanimoto, K. Yamamoto, T. Morii, Nonlinear stress-strain behavior of piezoelectric ceramics under tensile loading, IEEE International Symposium on Applications of Ferroelectrics, 394–397 (1994)

  2. F. Fang, W. Yang, Poling-enhanced fracture resistance of lead zirconate titanate ferroelectric ceramics J. Mater. Sci. Lett. 46, 131 (2000). doi:10.1016/S0167-577X(00)00155-5

    Article  CAS  MathSciNet  Google Scholar 

  3. C.Q. Ru, X. Mao, M. Epstein, Electric-field induced interfacial cracking in multilayer electrostrictive actuators J. Mech. Phys. Solids 46, 1301 (1998). doi:10.1016/S0022-5096(98)00038-6

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  4. R.Q. Ye, L.H. He, Electric field and stresses concentrations at the edge of parallel electrodes in piezoelectric ceramics Int. J. Solids Struct. 38, 6941 (2001). doi:10.1016/S0020-7683(00)00398-X

    Article  MATH  Google Scholar 

  5. A. Bent, N.W. Hagood, Piezoelectric fiber composites with interdigitated electrodes J. Intell. Mater. Syst. Struct. 8, 903 (1997)

    Article  Google Scholar 

  6. R.B. Williams, D.J. Inman, M.R. Schultz, M.W. Hyer, W.K. Wilkie, Nonlinear tensile and shear behavior of macro fiber composite actuators J. Compos. Mater. 38, 855 (2004). doi:10.1177/0021998304040555

    Article  CAS  Google Scholar 

  7. R. Paradies, M. Melnykowycz, Numerical stress investigation for piezoelectric elements with a circular cross section and interdigitated electrodes J. Intell. Mater. Syst. Struct. 18, 963 (2007). doi:10.1177/1045389X06071438

    Article  Google Scholar 

  8. C.R. Bowen, A. Bowles, S. Drake, N. Johnson, S. Mahon, Fabrication and finite element modelling of interdigitated electrodes Ferroelectrics 228, 257 (1999). doi:10.1080/00150199908226140

    Article  CAS  Google Scholar 

  9. W. Beckert, W.S. Kreher, Modelling piezoelectric modules with interdigitated electrode structures Comput. Mater. Sci. 26, 36 (2003). doi:10.1016/S0927-0256(02)00390-7

    Article  Google Scholar 

  10. C.R. Bowen, L.J. Nelson, R. Stevens, M.G. Cain, M. Stewart, Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites J. Electroceram. 16, 263 (2006). doi:10.1007/s10832-006-9862-8

    Article  Google Scholar 

  11. A.C. Dent, C.R. Bowen, R. Stevens, M.G. Cain, M. Stewart, Effective elastic properties for unpoled barium titanate J. Eur. Ceram. Soc. 27, 3739 (2007). doi:10.1016/j.jeurceramsoc.2007.02.031

    Article  CAS  Google Scholar 

  12. M. Marutake, A calculation of physical constants of ceramic barium titanate J. Phys. Soc. Jpn. 11, 807 (1956). doi:10.1143/JPSJ.11.807

    Article  CAS  ADS  Google Scholar 

  13. T. Tanimoto, K. Okazaki, K. Yamamoto, Tensile stress-strain behavior of piezoelectric ceramics Jpn. J. Appl. Phys. 32, 4233 (1993). doi:10.1143/JJAP.32.4233

    Article  CAS  ADS  Google Scholar 

  14. R. Paradies, Numerical investigation of piezoelectric actuators of the type AFC/MFC. Numerical Simulation of Electromechanical Systems, Proceedings NAFEMS Seminar 2005, Wiesbaden, Germany

  15. R. Paradies, B. Schläpfer, Finite element modeling of piezoelectric elements with complex electrode configuration. Paper No. 60, Proceedings: 18th International Conference of Adaptive Structures and Technologies, 3–5 October 2007, Ottawa, 14 pp

  16. N. Pini, S. Busato, H.R. Elsener, P. Ermanni, In situ growth of interdigitated electrodes made of polypyrrole for active fiber composites Polym. Adv. Technol. 18, 249 (2007). doi:10.1002/pat.883

    Article  CAS  Google Scholar 

  17. M. Melnykowycz, X. Kornmann, C. Huber, M. Barbezat, A.J. Brunner, Performance of integrated active fiber composites in fiber reinforced epoxy laminates Smart Mater. Struct. 15, 204 (2006). doi:10.1088/0964-1726/15/1/050

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Paradies.

Additional information

Rolf Paradies’ e-mail will only be available until the end of the year. For any inquiries, you may contact Michel Barbezat at Michel. Barbezat@empa.ch and at http://www.empa.ch/plugin/template/empa/*/15179/---/l=1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paradies, R., Melnykowycz, M.M. State of stress in piezoelectric elements with interdigitated electrodes. J Electroceram 24, 137–144 (2010). https://doi.org/10.1007/s10832-008-9547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9547-6

Keywords

Navigation