Skip to main content
Log in

Defects and transport in Gd-doped BaPrO3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The electrical conductivity of BaPr1−x GdxO3−δ has been characterized by means of the four-point van der Pauw technique at 200–1100 °C as a function of pO2 and pH2O. The contributions from ionic charge carriers were investigated by the EMF of concentration cells and the H+/D+ isotope effect on the total conductivity. BaPr1−x Gd x O3−δ is predominately a p-type electronic conductor under oxidizing conditions, while ionic conduction is barely measurable. Gd(III) substituted for Pr(IV) is charge compensated mainly by electron holes, with protons and oxygen vacancies contributing significantly but as minority defects only at low temperatures (wet conditions) and at high temperatures, respectively. The conductivity behaviour has been modelled under these assumptions to extract thermodynamic parameters for the defect reactions at play. The practical use of this material is limited by its poor chemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.D. Kreuer, Annu. Rev. Res. 33, 333–359 (2003) doi:10.1146/annurev.matsci.33.022802.091825

    Article  CAS  Google Scholar 

  2. H. Iwahara, Solid State Ion. 28–30, 573 (1988) doi:10.1016/S0167-2738(88)80104-8

    Article  Google Scholar 

  3. J. Guan, S.E. Dorris, U. Balachandran, M. Liu, J. Electrochem. Soc. 145, 1780 (1998) doi:10.1149/1.1838557

    Article  CAS  Google Scholar 

  4. T. Fukui, S. Ohara, S. Kawatsu, J. Power Sources 71, 164–168 (1998) doi:10.1016/S0378-7753(97)02813-9

    Article  CAS  Google Scholar 

  5. L. Li, J.R. Wu, S.M. Haile, Electrochem. Soc. Proc. 12, 214–223 (2001)

    Google Scholar 

  6. V.P. Gorelov, B.L. Kuzin, V.B. Balakireva, N.V. Sharova, G.K. Vdovin, S.M. Beresnev et al., Russ. J. Electrochem. 37(5), 505–511 (2001) doi:10.1023/A:1016628205030

    Article  CAS  Google Scholar 

  7. S. Mimuro, S. Shibako, Y. Oyama, K. Kobayashi, T. Higuchi, S. Shin et al., Solid State Ion. 178, 641–647 (2007) doi:10.1016/j.ssi.2007.02.006

    Article  CAS  Google Scholar 

  8. K.A. Furøy, R. Haugsrud, M. Hänsel, A. Magrasó, T. Norby, Solid State Ion 178, 461–467 (2007) doi:10.1016/j.ssi.2007.02.014

    Article  Google Scholar 

  9. A. Magrasó, F. Espiell, M. Segarra, J.T.S. Irvine, J. Power Sources 169, 53–58 (2007) doi:10.1016/j.jpowsour.2007.01.041

    Article  Google Scholar 

  10. A.J. Jacobson, B.C. Tofield, B.E.F. Fender, Acta Crystallogr. B 28, 956 (1972) doi:10.1107/S0567740872003462

    Article  CAS  Google Scholar 

  11. L. Li, J.R. Wu, M. Knight, S.M. Haile, Electrochem. Soc. Proc. 28, 58–66 (2001)

    Google Scholar 

  12. T. Norby, Y. Larring, Curr. Opin. Solid State Mater. Sci. 2(5), 593–599 (1997) doi:10.1016/S1359-0286(97)80051-4

    Article  CAS  Google Scholar 

  13. T. Norby, M. Widerøe, R. Glöckner, Y. Larring, Dalton Trans 19, 3012–3018 (2004) doi:10.1039/b403011g

    Article  PubMed  Google Scholar 

  14. A. Magrasó, A. Calleja, X.G. Capdevila, F. Espiell, Solid State Ion. 166(3–4), 359–364 (2004) doi:10.1016/j.ssi.2003.11.019

    Article  Google Scholar 

  15. T. Norby, Solid State Ion. 28–30, 1586 (1988) doi:10.1016/0167-2738(88)90424-9

    Article  Google Scholar 

  16. T. Norby, P. Kofstad, J. Am. Ceram. Soc. 67, 786 (1984) doi:10.1111/j.1151-2916.1984.tb19701.x

    Article  CAS  Google Scholar 

  17. A. Magrasó, Synthesis and characterization of BaPrO3-based materials for SOFC applications. Doctoral thesis, Faculty of Chemistry, University of Barcelona, Spain, pp. 111–144, 2007

  18. J.T.S. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2(3), 132 (1990) doi:10.1002/adma.19900020304

    Article  CAS  Google Scholar 

  19. V.V. Kharton, M.V. Patrakeev, J.C. Waerenborgh, A.V. Kovalevsky, Y.V. Pivak, P. Gaczynski, A.A. Markov, A.A. Yaremchenko, J. Phys. Chem. Solids 68, 355–366 (2007)

    Article  ADS  CAS  Google Scholar 

  20. M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov, K.R. Poeppelmeier, J. Solid State Chem. 178, 921–927 (2005) doi:10.1016/j.jssc.2004.10.038

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr. Albert Tarancón (EME, University of Barcelona) for assistance to obtain part of the experimental data. This work has been supported through the BRD scholarship (University of Barcelona) and CeRMAE centre (Generalitat de Catalunya) for AM and by the Research Council of Norway, grant no. 15851/431 (Functional Oxides for Energy Technology, NANOMAT) for RH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Magrasó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magrasó, A., Haugsrud, R., Segarra, M. et al. Defects and transport in Gd-doped BaPrO3 . J Electroceram 23, 80–88 (2009). https://doi.org/10.1007/s10832-008-9541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9541-z

Keywords

Navigation