Skip to main content

Advertisement

Log in

LiCoO2 thin film cathodes grown by sol–gel method

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Lithiated layered transitional metal oxide materials of the LiMO2 type and especially LiCoO2 presents interesting specific properties as high energy density, long cycle life and constant discharging properties in a wide range of working conditions as well as a good safety. These properties made these materials excellent candidates as active compounds for high capacity cathode materials for rechargeable lithium batteries. LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices. Operation of lithium rechargeable batteries is dependent on reversible lithium insertion and extraction processes into and from the host materials of lithium storage. In this study, LiCoO2 thin films were prepared by the sol–gel spin coating technique using metal acetate and citric acid as starting materials. Citric acid acts as a chelating agent, which promotes the preliminary reaction between lithium and cobalt and suppresses the precipitation of acetates. The sol–gel method is well known as one of promising thin-film preparation methods, which has good advantages such as low fabrication cost, relatively easy stoichiometry control, high deposition rate and also known as a low-temperature synthesis method for various ceramics. In addition, the crystal phases involved in the thin film can also be controlled by changing the chemical compositions of the sol. The crystallinity, microstructure and electrochemical properties of final films are also studied by XRD, SEM, AFM and galvanostatic charge/discharge cycling test. Films heat-treated under appropriate conditions exhibit high capacity and good crystallinity so those films are considered to be candidates as cathodes for thin-film micro batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.A. Jeon, S.K. Kim, Y.S. Kim, D.H. Won, B.I. Kim, K.S. No, J. Electroceram. 17, 667 (2006)

    Article  CAS  Google Scholar 

  2. X.J. Zhu, H.X. Liu, X.Y. Gan, M.H. Cao, J. Zhou, W. Chen, Q. Xu, S.X. Ouyang, J. Electroceram. 17, 645 (2006)

    Article  Google Scholar 

  3. H.S. Kim, S.I. Kim, C.W. Lee, S.I. Moon, J. Electroceram. 17, 673 (2006)

    Article  CAS  Google Scholar 

  4. M.S. Park, S.H. Hyun, S.C. Nam, J. Electroceram. 17, 651 (2006)

    Article  CAS  Google Scholar 

  5. H. Wang, Y.I. Jang, B. Huang, D.R. Sadoway, Y.M. Chiang, J. Electrochem. Soc. 146, 473 (1999)

    Article  CAS  Google Scholar 

  6. W.S. Yoon, K.K. Lee, K.B. Kim, J. Electrochem. Soc. 147(6), 2023 (2000)

    Article  CAS  Google Scholar 

  7. G.T. Fey, D.L. Huang, Electrochim. Acta 45, 295 (1999)

    Article  CAS  Google Scholar 

  8. M.N. Obrovac, O. Mao, J.R. Dahn, Solid State Ion. 112, 9 (1998)

    Article  CAS  Google Scholar 

  9. J.B. Bates, G.R. Gruzalski, N.J. Dudney, C.F. Luck, X. Yu, Solid State Ion. 70/71, 619 (1994)

    Article  Google Scholar 

  10. K.H. Hwang, S.H. Lee, S.K. Joo, J. Power Sources 54, 224 (1995)

    Article  CAS  Google Scholar 

  11. K.H. Hwang, S.H. Lee, S.K. Joo, J. Electrochem. Soc. 141, 3296 (1994)

    Article  CAS  Google Scholar 

  12. J.B. Bates, N.J. Dudney, D.C. Lubben, G.R. Gruzalski, B.S. Kwak, X. Yu, R.A. Zuhr, J. Power Sources 54, 58 (1995)

    Article  CAS  Google Scholar 

  13. S.J. Lee, J.K. Lee, D.W. Kim, H.K. Baik, J. Electrochem. Soc. 143, L268 (1996)

    Article  CAS  Google Scholar 

  14. K.A. Striebel, C.Z. Deng, S.J. Wen, E.J. Cairns, J. Electrochem. Soc. 143, 1821 (1996)

    Article  CAS  Google Scholar 

  15. P. Fragnaud, R. Nagarajan, K.M. Schleich, D. Vujic, J. Power Sources 54, 362 (1995)

    Article  CAS  Google Scholar 

  16. P. Fragnaud, D.M. Schleich, Sens. Actuators, A, Phys. 51, 21 (1995)

    Article  Google Scholar 

  17. S.D. Jones, J.R. Akridge, J. Power Sources 54, 63 (1995)

    Article  CAS  Google Scholar 

  18. S.D. Jones, J.R. Akridge, F.K. Shokoohi, Solid State Ion. 69, 357 (1994)

    Article  CAS  Google Scholar 

  19. L. Chen, J. Schoonman, Solid State Ion 67, 17 (1994)

    Article  Google Scholar 

  20. JCPDS data file 16-0427

  21. H. Xia, L. Lu, G. Ceder, J. Alloys Compd. 417, 304 (2006)

    Article  CAS  Google Scholar 

  22. W. Huang, R. French, Solid State Ion. 86, 395 (1996)

    Article  Google Scholar 

Download references

Acknowledgement

One of the authors Dr. Vaishali Patil would like to thank Prof. T. J. Sawant, Founder Secretary, Jayawant Shikshan Prasarak Mandal, Pune, India for deputing to the KIST, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Jin Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, V., Patil, A., Choi, JW. et al. LiCoO2 thin film cathodes grown by sol–gel method. J Electroceram 23, 214–218 (2009). https://doi.org/10.1007/s10832-007-9401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9401-2

Keywords

Navigation