Skip to main content
Log in

Low temperature hydrothermal routes to various PZT stoichiometries

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The production of lead zirconate titanate (PZT) with a variation in Zr and Ti ratios using a hydrothermal method has been attempted. We show that when reactions are conducted at 160 °C, for 4 h, the phase of PZT produced is independent of the initial Zr/Ti precursor ratio. In all cases we produce PZT with a crystal structure close to the morphotropic phase boundary, i.e. Zr/Ti ≈ 52:48. The excess precursors either fail to react, or form amorphous and crystalline impurity phases that are detectable via powder XRD after the hydrothermal treatment. Using an excess of Pb precursor is shown to aid the crystallisation of the resultant PZT powder, as verified by SEM and FIB analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.S. Roy, H. Gleeson, C.P. Shaw, R.W. Whatmore, Z. Huang, Q. Zhang, S. Dunn, Integr. Ferroelectr. 29, 189 (2000)

    Article  CAS  Google Scholar 

  2. S. Dunn, R.W. Whatmore, J. Euro. Ceram. Soc. 22(6), 825–833 (2002)

    Article  CAS  Google Scholar 

  3. S. Dunn, A.P. De Kroon, R.W. Whatmore, J. Mater. Sci. Lett. 20, 179 (2001)

    Article  CAS  Google Scholar 

  4. Z. Huang, Q. Zhang, R.W. Whatmore, J. Appl. Phys. 85, 7355 (1999)

    Article  CAS  Google Scholar 

  5. S. Dunn, J. Appl. Phys. 94(9), 5964–5968 (2003)

    Article  CAS  Google Scholar 

  6. T. Morita, T. Kanda, Y. Yamagata, M. Kurosawa, T. Higuchi, Jpn. J. Appl. Phys. 36, 2998 (1997)

    Article  CAS  Google Scholar 

  7. B. Su, C.B. Ponton, T.W. Button, J. Euro. Ceram. Soc. 21, 1539 (2001)

    Article  CAS  Google Scholar 

  8. J. Zeng, M. Zhang, Z. Song, L. Wang, J. Li, K. Li, C. Lin, Appl. Surface Sci. 148, 137 (1999)

    Article  CAS  Google Scholar 

  9. T. Morita, Y. Cho, Appl Phys Lett. 85, 2331 (2004)

    Article  CAS  Google Scholar 

  10. J.-H. Choy, Y.-S, Han, J.-T, Kim, J. Mater. Chem. 5, 65(1995)

    Article  CAS  Google Scholar 

  11. R.N. Das, P. Pramanik, Mater. Lett. 40, 251 (1999)

    Article  CAS  Google Scholar 

  12. Y. Faheem, M. Shoaib, J. Am. Ceram. Soc. 89, 2034 (2006)

    Article  CAS  Google Scholar 

  13. S. Linardos, Q. Zhang, J.R. Alcock, J. Europ. Ceram. Soc. 26, 117 (2006)

    Article  CAS  Google Scholar 

  14. R.N. Das, R.K. Pati, P. Pramanik, Mater. Lett. 45, 350 (2000)

    Article  CAS  Google Scholar 

  15. P. Pramanik, R.N. Das, Mater. Sci. Eng. A304–A306, 775 (2001)

    Google Scholar 

  16. S. Bose, A. Banerjee, J. Am. Ceram. Soc. 87, 487 (2004)

    Article  CAS  Google Scholar 

  17. S. Dunn, C.P. Shaw, Z. Huang, R.W. Whatmore, Nanotechnology, 13(4), 456–459 (2002)

    Article  CAS  Google Scholar 

  18. Y. Deng, L. Liu, Y. Cheng, C.-W. Nan, S.-J. Zhao, Mater. Lett. 57, 1675 (2003)

    Article  CAS  Google Scholar 

  19. A. Boutarfaia, S.E. Bouaoud, Ceram. Int. 22, 281 (1996)

    Article  Google Scholar 

  20. S. Fushimi, T. Ikeda, J Am. Ceram. Soc. 50, 129 (1967)

    Article  CAS  Google Scholar 

  21. T.R.N. Kutty, R. Balachandran, Mat. Res. Bull. 19, 1479 (1984)

    Article  CAS  Google Scholar 

  22. H. Cheng, J. Ma, B. Zhu, Y. Cui, J. Am. Ceram. Soc. 76, 625 (1993)

    Article  CAS  Google Scholar 

  23. M.M. Lencka, A. Anderko, R.E. Riman, J. Am. Ceram. Soc. 78, 2609 (1995)

    Article  CAS  Google Scholar 

  24. S-B. Cho, J-S. Noh, M.M. Lencka, R.E. Riman, J. Euro. Ceram. Soc. 23, 2323 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Dunn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, S., Dunn, S. Low temperature hydrothermal routes to various PZT stoichiometries. J Electroceram 20, 65–71 (2008). https://doi.org/10.1007/s10832-007-9345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9345-6

Keywords

Navigation