Skip to main content
Log in

Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

There has been a significant driving force to eliminate the utilization, recycling, and disposal of ferroelectric ceramics with high content of toxic element (Pb). Recently, the ternary system of KNN-LT-LS has proven to be an outstanding lead-free piezoceramic with properties almost comparable to their lead-based counterpart, PZT. This study reports the effect of various processing conditions on the electromechanical properties of (K0.44Na0.52Li0.04)(Nb0.84Ta0.10Sb0.06)O3 system. This includes powder processing, humidity, and exposure to oxygen rich environment during sintering. The Perovskite and Mixed-Oxide methods are used to prepare the stoichiometric powders. It will be shown that both processing methods are notably sensitive to the moisture of as received raw materials and the humidity of environment. Optimum results are obtained when the raw materials undergo a pre-heat treatment followed by formulating the desired composition in an inert atmosphere. The highest electromechanical properties are achieved when the ceramics are completely exposed to oxygen with a high flow rate. Sintered at 1150 °C for 1 h with an oxygen flow rate of 180 cm3/min, the KNN-LT-LS ceramics prepared by Perovskite and Mixed-Oxide routes have d 33 ≥ 300 pC/N, \(\varepsilon ^{T}_{{33}} = 1865\), tan δ = 0.02, k 33 = 0.65.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Jaffe, Piezoelectric Ceramics (Academic, New York, 1971), p. 214

    Google Scholar 

  2. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2(4), 257 (1998)

    Article  CAS  Google Scholar 

  3. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  CAS  Google Scholar 

  4. R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962)

    Article  CAS  Google Scholar 

  5. M. Kosec, D. Kolar, Mater. Res. Bull. 10, 335 (1975)

    Article  CAS  Google Scholar 

  6. S. Tashiro, H. Nagamatsu, K. Nagata, Jpn. J. Appl. Phys. 41, 7113 (2002)

    Article  CAS  Google Scholar 

  7. V. Bobnar, B. Malic, J. Holc, M. Kosec, J. Appl. Phys. 98, 024113 (2005)

    Article  CAS  Google Scholar 

  8. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. 43, 7159 (2004)

    Google Scholar 

  9. M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Jpn. J. Appl. Phys. 44, 258 (2005)

    Article  CAS  Google Scholar 

  10. Y. Guo, Ken-ichi Kakimoto, H. Ohasto, Matt. Lett. 59, 241 (2005)

    Article  CAS  Google Scholar 

  11. Y. Saito, H. Takao, T. Tani, T. Nanoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 123, 84 (2004)

    Article  CAS  Google Scholar 

  12. T. Nonoyama, T. Nagaya, Y. Saito, K. Takatori, T. Homma, H. Takao, US Patent #0178605A1, (2003)

  13. The Institute of Electrical and Electronics Engineers (IEEE), Standards on Piezoelectricity, American National Standards Institute, ANSI/IEEE Std. 176, (1987)

  14. S. Priya, A. Ando, K. Uchino, Development in Dielectric Materials and Electronic Devices, Ceramic Trans, ed. By K.M. Nair, R. Guo, A.S. Bhalla, S.I. Hirano,D. Suvorov (The American Ceramic Society, Indianapolis, 2005), p. 223

  15. Y. Saito, Jpn. J. Appl. Phys. 36, 5963–5996 (1997)

    Article  CAS  Google Scholar 

  16. K. Kakimoto, I. Masuda, H. Ohsato, J. Euro. Ceram. Soc. 25, 2719 (2005)

    Article  CAS  Google Scholar 

  17. F. Xia, X. Yao, J. Mater. Res. 14, 1683 (1999)

    Article  Google Scholar 

  18. S.E. Park, T. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, (1997)

  19. T.R. Shrout, R. Eitel, C. Randall, Piezoelectric Materials in Devices, ed. By N. Setter (EPFL Swiss Federal Institute of Technology, Lausanne, Switzerland, 2002), p. 413

    Google Scholar 

  20. F. Xia, X. Yao, J. Appl. Phys. 92, 2709 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Glenn Howatt Foundation at the Electroceramic Laboratory of Rutgers University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Marandian Hagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marandian Hagh, N., Jadidian, B. & Safari, A. Property-processing relationship in lead-free (K, Na, Li) NbO3-solid solution system. J Electroceram 18, 339–346 (2007). https://doi.org/10.1007/s10832-007-9171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9171-x

Keywords

Navigation