Skip to main content
Log in

Separation of lattice structural and electronic effects on physical properties with nanotechnology

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Physical properties of electronic and photonic materials can be significantly modified by partial altervalent/aliovalent chemical substitutes. The modification arises from the subtle interplay between the competing/cooperating effects of the electron and lattice structural variations, which are induced by the different charge and atomic radii of the substituents. To understand these effects, it is necessary to isolate the electronic and crystallographic contributions to the particular physical property to arrive at a fundamental understanding of the underlying dominant mechanism. Intrinsic properties amplified nanomaterials/nanoparticles is a newly developed technique which can experimentally discriminate lattice structural effects from electronic contributions to physical properties by exploiting the nanosize dependence of lattice structure to modify the structural parameters without resorting to chemical doping. In this work, we demonstrate a separation of structural and electronic effects on superconducting critical temperatures (T c ) of MgB2 and YBa2Cu3O7-x, and also on emission behavior of ZnO. The results show that the superconductivity of MgB2 is extremely sensitive to lattice parameter variation while T c of YBa2Cu3O7-x is more sensitive to electronic structure. The effects of the lattice and electronic structures on the emission behavior of ZnO are complex and the structural variations make different contributions to the behavior in the particular conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. de la Peña, A. Aguayo, R. de Coss, Phys. Rev., B 66, 012511 (2002)

    Article  ADS  Google Scholar 

  2. Y.G. Zhao, X.P. Zhang, P.T. Qiao, H.T. Zhang, S.L. Jia, B.S. Cao, M.H. Zhu, Z.H. Han, X.L. Wang, B.L. Gu, Physica, C 361, 91 (2001)

    Article  ADS  CAS  Google Scholar 

  3. J.S. Ahn, E.S. Choi, W. Kang, D.J. Singh, M. Han, E.J. Choi, Phys. Rev., B 65, 2145341 (2002)

    Google Scholar 

  4. W. Mickelson, J. Cumings, W.Q. Han, A. Zettl, Phys. Rev., B 65, 052505 (2002)

    Article  ADS  Google Scholar 

  5. R.A. Ribeiro, S.L. Bud’ko, C. Petrovic, P.C. Canfield, Physica, C 384, 227 (2003)

    Article  ADS  CAS  Google Scholar 

  6. J. Tang, L.C. Qin, A. Matsushita, Y. Takano, K. Togano, H. Kito, and H. Ihara, Phys. Rev., B 64, 132509 (1999)

    Article  ADS  Google Scholar 

  7. J.S. Slusky, N. Rogado, K.A. Regan, M.A. Hayward, P. Khalifah, T. He, K. Inumaru, S.M. Loureiro, M.K. Haas, H.W. Zandbergen, R.J. Cava, Nature 410, 343 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. K. Shimizu, T. Kimura, S. Furomoto, K. Takeda, K. Kontani, Y. Onuki, K. Amaya, Nature 412, 316 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  9. S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K.W. Haselwimmer, M.J. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, J. Flouquet, Nature 406, 587 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  10. A. Vegas, Crystallogr. Rev. 7, 189 (2000)

    Article  CAS  Google Scholar 

  11. C.Q. Sun, W.H. Zhong, S. Li, B.K. Tay, H.L. Bai, E.Y. Jiang, J. Phys. Chem., B 108, 1080 (2004)

    Article  CAS  Google Scholar 

  12. S. Souma, Y. Machida, T. Sato, T. Takahashi, H. Matsui, S.C. Wang, H. Ding, A. Kaminski, J.C. Campuzano, S. Sasaki, K. Kadowaki, Nature 423, 65 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  13. J. Orenstein, A.J. Millis, Science 288, 468 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  14. B. Lake, H.M. Rønnow, N.B. Christensen, G. Aeppli, K. Lefmann, D.F. Mcmorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, T.E. Mason, Nature 415, 299 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Tay, Y.Y. & Sun, C.Q. Separation of lattice structural and electronic effects on physical properties with nanotechnology. J Electroceram 21, 91–98 (2008). https://doi.org/10.1007/s10832-007-9078-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-007-9078-6

Keywords

Navigation